Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A fungal monooxygenase-derived jasmonate attenuates host innate immunity

Abstract

Distinct modifications fine-tune the activity of jasmonic acid (JA) in regulating plant growth and immunity. Hydroxylated JA (12OH-JA) promotes flower and tuber development but prevents induction of JA signaling, plant defense or both. However, biosynthesis of 12OH-JA has remained elusive. We report here an antibiotic biosynthesis monooxygenase (Abm) that converts endogenous free JA into 12OH-JA in the model rice blast fungus Magnaporthe oryzae. Such fungal 12OH-JA is secreted during host penetration and helps evade the defense response. Loss of Abm in M. oryzae led to accumulation of methyl JA (MeJA), which induces host defense and blocks invasive growth. Exogenously added 12OH-JA markedly attenuated abmΔ-induced immunity in rice. Notably, Abm itself is secreted after invasion and most likely converts plant JA into 12OH-JA to facilitate host colonization. This study sheds light on the chemical arms race during plant-pathogen interaction, reveals Abm as an antifungal target and outlines a synthetic strategy for transformation of a versatile small-molecule phytohormone.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: M. oryzae uses the Abm monooxygenase to evade host innate immunity.
Figure 2: Abm is involved in the biosynthesis of 12OH-JA from JA.
Figure 3: JA derivatives show distinct effects on the host defense response against the blast fungus.
Figure 4: 12OH-JA blocks the induction of JA signaling.
Figure 5: Abm associates partially with the endoplasmic reticulum in M. oryzae and is secreted during invasive growth.
Figure 6: Abm-based hydroxylation of endogenous JA by M. oryzae overcomes the innate immunity in rice.

References

  1. Loake, G. & Grant, M. Salicylic acid in plant defence—the players and protagonists. Curr. Opin. Plant Biol. 10, 466–472 (2007).

    CAS  PubMed  Google Scholar 

  2. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S. & Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5, 308–316 (2009).

    CAS  PubMed  Google Scholar 

  3. Pozo, M.J., Van Loon, L.C. & Pieterse, C.M.J. Jasmonates—signals in plant-microbe interactions. J. Plant Growth Regul. 23, 211–222 (2004).

    CAS  Google Scholar 

  4. Felix, G. & Boller, T. Systemin induces rapid ion fluxes and ethylene biosynthesis in Lycopersicon peruvianum cells. Plant J. 7, 381–389 (1995).

    CAS  Google Scholar 

  5. Moyen, C. & Johannes, E. Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ. 19, 464–470 (1996).

    CAS  Google Scholar 

  6. Narvaez-Vasquez, J., Florin-Christensen, J. & Ryan, C.A. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11, 2249–2260 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Król, P., Igielski, R., Pollmann, S. & Kepczynska, E. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f. sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. J. Plant Physiol. 179, 122–132 (2015).

    PubMed  Google Scholar 

  8. Zhang, Y.T. et al. Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer. BMC Genomics 16, 224 (2015).

    PubMed  PubMed Central  Google Scholar 

  9. Gidda, S.K. et al. Biochemical and molecular characterization of a hydroxyjasmonate sulfotransferase from Arabidopsis thaliana. J. Biol. Chem. 278, 17895–17900 (2003).

    CAS  PubMed  Google Scholar 

  10. Miersch, O., Neumerkel, J., Dippe, M., Stenzel, I. & Wasternack, C. Hydroxylated jasmonates are commonly occurring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol. 177, 114–127 (2008).

    CAS  PubMed  Google Scholar 

  11. Miersch, O., Bohlmann, H. & Wasternack, C. Jasmonates and related compounds from Fusarium oxysporum. Phytochemistry 50, 517–523 (1999).

    CAS  Google Scholar 

  12. Miersch, O., Porzel, A. & Wasternack, C. Microbial conversion of jasmonates-hydroxylations by Aspergillus niger. Phytochemistry 50, 1147–1152 (1999).

    CAS  PubMed  Google Scholar 

  13. Yoshihara, T. et al. Structure of a tuber-inducing stimulus from potato leaves (Solanum tuberosum L.). Agr. Biol. Chem. Tokyo 53, 2835–2837 (1989).

    CAS  Google Scholar 

  14. Theoharides, A.D. & Kupfer, D. Evidence for different hepatic microsomal monooxygenases catalyzing omega- and (omega-1)-hydroxylations of prostaglandins E1 and E2. Effects of inducers of monooxygenase on the kinetic constants of prostaglandin hydroxylation. J. Biol. Chem. 256, 2168–2175 (1981).

    CAS  PubMed  Google Scholar 

  15. Werck-Reichhart, D., Bak, S. & Paquette, S. Cytochromes P450. in The Arabidopsis Book/American Society of Plant Biologists, 1, e0028 (2002).

    PubMed Central  Google Scholar 

  16. Cross, B.E. & Webster, G.R. New metabolites of Gibberella fujikuroi. XV. N-jasmonoyl- and N-dihydrojasmonoyl-isoleucine. J. Chem. Soc. Perk T1 13, 1839–1342 (1970).

    CAS  Google Scholar 

  17. Miersch, O., Gunther, T., Fritsche, W. & Sembdner, G. Jasmonates from different fungal species. Nat. Prod. Lett. 2, 293–299 (1993).

    CAS  Google Scholar 

  18. Miersch, O., Schneider, G. & Sembdner, G. Hydroxylated jasmonic acid and related compounds from Botryodiplodia theobromae. Phytochemistry 30, 4049–4051 (1991).

    CAS  Google Scholar 

  19. Brodhun, F. & Feussner, I. Oxylipins in fungi. FEBS J. 278, 1047–1063 (2011).

    CAS  PubMed  Google Scholar 

  20. Dean, R. et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Dayton, L. Agribiotechnology: blue-sky rice. Nature 514, S52–S54 (2014).

    PubMed  Google Scholar 

  22. Riemann, M. et al. Identification of rice allene oxide cyclase mutants and the function of jasmonate for defence against Magnaporthe oryzae. Plant J. 74, 226–238 (2013).

    CAS  PubMed  Google Scholar 

  23. Patkar, R.N., Xue, Y.K., Shui, G., Wenk, M.R. & Naqvi, N.I. Abc3-mediated efflux of an endogenous digoxin-like steroidal glycoside by Magnaporthe oryzae is necessary for host invasion during blast disease. PLoS Pathog. 8, e1002888 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Letelier, M.E. et al. Melatonin protects the cytochrome P450 system through a novel antioxidant mechanism. Chem. Biol. Interact. 185, 208–214 (2010).

    CAS  PubMed  Google Scholar 

  25. Cucurou, C., Battioni, J.P., Thang, D.C., Nam, N.H. & Mansuy, D. Mechanisms of inactivation of lipoxygenases by phenidone and BW755C. Biochemistry 30, 8964–8970 (1991).

    CAS  PubMed  Google Scholar 

  26. Radhika, V., Kost, C., Boland, W. & Heil, M. The role of jasmonates in floral nectar secretion. PLoS ONE 5, e9265 (2010).

    PubMed  PubMed Central  Google Scholar 

  27. Larrieu, A. et al. A fluorescent hormone biosensor reveals the dynamics of jasmonate signalling in plants. Nat. Commun. 6, 6043 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Giraldo, M.C. et al. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat. Commun. 4, 1996 (2013).

    PubMed  PubMed Central  Google Scholar 

  29. Grocholski, T. et al. Crystal structure of the cofactor-independent monooxygenase SnoaB from Streptomyces nogalater: implications for the reaction mechanism. Biochemistry 49, 934–944 (2010).

    CAS  PubMed  Google Scholar 

  30. Snyder, B.A., Leite, B., Hipskind, J., Butler, L.G. & Nicholson, R.L. Accumulation of sorghum phytoalexins induced by Colletotrichum graminicola at the infection site. Physiol. Mol. Plant Pathol. 39, 463–470 (1991).

    CAS  Google Scholar 

  31. Horie, K. et al. Identification of UV-induced diterpenes including a new diterpene phytoalexin, pF, from rice leaves by complementary GC/MS and LC/MS approaches. J. Agric. Food Chem. 63, 4050–4059 (2015).

    CAS  PubMed  Google Scholar 

  32. Umemura, K. et al. Possible role of phytocassane, rice phytoalexin, in disease resistance of rice against the blast fungus Magnaporthe grisea. Biosci. Biotechnol. Biochem. 67, 899–902 (2003).

    CAS  PubMed  Google Scholar 

  33. Chi, M.H., Park, S.Y., Kim, S. & Lee, Y.H. A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog. 5, e1000401 (2009).

    PubMed  PubMed Central  Google Scholar 

  34. Deng, Y.Z., Qu, Z., He, Y. & Naqvi, N.I. Sorting nexin Snx41 is essential for conidiation and mediates glutathione-based antioxidant defense during invasive growth in Magnaporthe oryzae. Autophagy 8, 1058–1070 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Fernandez, J. et al. Plant defence suppression is mediated by a fungal sirtuin during rice infection by Magnaporthe oryzae. Mol. Microbiol. 94, 70–88 (2014).

    CAS  PubMed  Google Scholar 

  36. Huang, K., Czymmek, K.J., Caplan, J.L., Sweigard, J.A. & Donofrio, N.M. HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog. 7, e1001335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Schweizer, P. et al. Jasmonate-iducible genes are activated in rice by pathogen attack without a concomitant increase in endogenous jasmonic acid levels. Plant Physiol. 114, 79–88 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schweizer, P., Gees, R. & Mosinger, E. Effect of jasmonic acid on the interaction of barley (Hordeum vulgare L.) with the powdery mildew Erysiphe graminis f.sp. hordei. Plant Physiol. 102, 503–511 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Schaller, F., Biesgen, C., Mussig, C., Altmann, T. & Weiler, E.W. 12-Oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis. Planta 210, 979–984 (2000).

    CAS  PubMed  Google Scholar 

  40. Weber, H. Fatty acid–derived signals in plants. Trends Plant Sci. 7, 217–224 (2002).

    CAS  PubMed  Google Scholar 

  41. Theodoulou, F.L. et al. Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol. 137, 835–840 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hedden, P. & Phillips, A.L. Manipulation of hormone biosynthetic genes in transgenic plants. Curr. Opin. Biotechnol. 11, 130–137 (2000).

    CAS  PubMed  Google Scholar 

  43. Weber, H., Vick, B.A. & Farmer, E.E. Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc. Natl. Acad. Sci. USA 94, 10473–10478 (1997).

    CAS  PubMed  Google Scholar 

  44. Taki, N. et al. 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiol. 139, 1268–1283 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Park, J.W., Reed, J.R., Brignac-Huber, L.M. & Backes, W.L. Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum. Biochem. J. 464, 242–249 (2014).

    Google Scholar 

  46. Xin, X., Mains, R.E. & Eipper, B.A. Monooxygenase X, a member of the copper-dependent monooxygenase family localized to the endoplasmic reticulum. J. Biol. Chem. 279, 48159–48167 (2004).

    CAS  PubMed  Google Scholar 

  47. Tanaka, S. et al. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. Elife 3, e01355 (2014).

    PubMed  PubMed Central  Google Scholar 

  48. Djamei, A. et al. Metabolic priming by a secreted fungal effector. Nature 478, 395–398 (2011).

    CAS  PubMed  Google Scholar 

  49. Creelman, R.A. & Mullet, J.E. Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc. Natl. Acad. Sci. USA 92, 4114–4119 (1995).

    CAS  PubMed  Google Scholar 

  50. Koda, Y. et al. Potato tuber inducing activities of jasmonic acid and related compounds. Phytochemistry 30, 1435–1438 (1991).

    CAS  Google Scholar 

  51. Patkar, R.N., Ramos-Pamplona, M., Gupta, A.P., Fan, Y. & Naqvi, N.I. Mitochondrial β-oxidation regulates organellar integrity and is necessary for conidial germination and invasive growth in Magnaporthe oryzae. Mol. Microbiol. 86, 1345–1363 (2012).

    CAS  PubMed  Google Scholar 

  52. Patkar, R.N., Suresh, A. & Naqvi, N.I. MoTea4-mediated polarized growth is essential for proper asexual development and pathogenesis in Magnaporthe oryzae. Eukaryot. Cell 9, 1029–1038 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang, F. & Naqvi, N.I. Sulfonylurea resistance reconstitution as a novel strategy for ILV2-specific integration in Magnaporthe oryzae. Fungal Genet. Biol. 68, 71–76 (2014).

    CAS  PubMed  Google Scholar 

  54. Khang, C.H. et al. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22, 1388–1403 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Valent, B., Farrall, L. & Chumley, F.G. Magnaporthe grisea genes for pathogenicity and virulence identified through a series of backcrosses. Genetics 127, 87–101 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kankanala, P., Czymmek, K. & Valent, B. Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19, 706–724 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Staswick (University of Nebraska) for the chemically synthesized 12OH-JA and L. Laplaze (Institut de recherche pour le développement, France) for sharing Jas9-VENUS plasmids and transgenic Arabidopsis seeds. We thank L. Yixin and Z. Bo for help with ChemDraw. We also thank the Fungal Patho-Biology group for helpful discussions and suggestions. We are grateful to M. Calvert for help in spinning-disk confocal microscopy. This research was carried out using funds from the Temasek Life Sciences Laboratory (Singapore) and the National Research Foundation (Prime Minister's Office; NRF-CRP7-2010-02), Singapore.

Author information

Authors and Affiliations

Authors

Contributions

R.N.P. conceived, designed and performed the experiment, analyzed the data and co-wrote the manuscript. P.I.B. performed the chemical analyses and interpreted the data. Z.Q. performed the experiments. Y.Y.C.C. performed the initial gene-deletion analysis. F.Y. performed the experiments. S.S. contributed the analysis tools and interpreted and analyzed the data. N.I.N. conceived and designed the experiments; provided reagents, materials and analysis tools; analyzed and interpreted the data; and co-wrote the manuscript.

Corresponding authors

Correspondence to Rajesh N Patkar or Naweed I Naqvi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–15. (PDF 19870 kb)

41589_2015_BFnchembio1885_MOESM249_ESM.mov

Dynamics of Jas9-VENUS and H2B-RFP over a 30 min period in transgenic Arabidopsis roots treated with 1% ethanol (MOV 1649 kb)

41589_2015_BFnchembio1885_MOESM250_ESM.mov

Dynamics of Jas9-VENUS and H2B-RFP over a 30 min period in transgenic Arabidopsis roots treated with 50 μM JA (MOV 1528 kb)

41589_2015_BFnchembio1885_MOESM251_ESM.mov

Dynamics of Jas9-VENUS and H2B-RFP over a 30 min period in transgenic Arabidopsis roots treated with 50 μM MeJA (MOV 1156 kb)

41589_2015_BFnchembio1885_MOESM252_ESM.mov

Dynamics of Jas9-VENUS and H2B-RFP over a 30 min period in transgenic Arabidopsis roots treated with 50 μM 12OH-JA (MOV 1484 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patkar, R., Benke, P., Qu, Z. et al. A fungal monooxygenase-derived jasmonate attenuates host innate immunity. Nat Chem Biol 11, 733–740 (2015). https://doi.org/10.1038/nchembio.1885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing