Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Computational approaches to natural product discovery

Abstract

Starting with the earliest Streptomyces genome sequences, the promise of natural product genome mining has been captivating: genomics and bioinformatics would transform compound discovery from an ad hoc pursuit to a high-throughput endeavor. Until recently, however, genome mining has advanced natural product discovery only modestly. Here, we argue that the development of algorithms to mine the continuously increasing amounts of (meta)genomic data will enable the promise of genome mining to be realized. We review computational strategies that have been developed to identify biosynthetic gene clusters in genome sequences and predict the chemical structures of their products. We then discuss networking strategies that can systematize large volumes of genetic and chemical data and connect genomic information to metabolomic and phenotypic data. Finally, we provide a vision of what natural product discovery might look like in the future, specifically considering longstanding questions in microbial ecology regarding the roles of metabolites in interspecies interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The role of computation in natural product discovery.
Figure 2: Strategies for identifying BGCs.
Figure 3: Grouping BCGs into families.
Figure 4: Big data challenges for biosynthesis.

Similar content being viewed by others

References

  1. Bentley, S.D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417, 141–147 (2002).

    Article  PubMed  Google Scholar 

  2. Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).

    Article  PubMed  Google Scholar 

  3. Medema, M.H., Breitling, R., Bovenberg, R. & Takano, E. Exploiting plug-and-play synthetic biology for drug discovery and production in microorganisms. Nat. Rev. Microbiol. 9, 131–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Bouslimani, A., Sanchez, L.M., Garg, N. & Dorrestein, P.C. Mass spectrometry of natural products: current, emerging and future technologies. Nat. Prod. Rep. 31, 718–729 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Krug, D. & Müller, R. Secondary metabolomics: the impact of mass spectrometry-based approaches on the discovery and characterization of microbial natural products. Nat. Prod. Rep. 31, 768–783 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Rappé, M.S. & Giovannoni, S.J. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Epstein, S.S. The phenomenon of microbial uncultivability. Curr. Opin. Microbiol. 16, 636–642 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Streit, W.R. & Schmitz, R.A. Metagenomics—the key to the uncultured microbes. Curr. Opin. Microbiol. 7, 492–498 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Lasken, R.S. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10, 631–640 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Klassen, J.L. & Currie, C.R. Gene fragmentation in bacterial draft genomes: extent, consequences and mitigation. BMC Genomics 13, 14 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10, 421 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eddy, S.R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Weber, T. et al. CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters. J. Biotechnol. 140, 13–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Starcevic, A. et al. ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures. Nucleic Acids Res. 36, 6882–6892 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, M.H., Ung, P.M., Zajkowski, J., Garneau-Tsodikova, S. & Sherman, D.H. Automated genome mining for natural products. BMC Bioinformatics 10, 185 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khaldi, N. et al. SMURF: genomic mapping of fungal secondary metabolite clusters. Fungal Genet. Biol. 47, 736–741 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Medema, M.H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Blin, K. et al. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers. Nucleic Acids Res. 41, W204–W212 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Eddy, S.R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Fischbach, M.A. & Walsh, C.T. Antibiotics for emerging pathogens. Science 325, 1089–1093 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412–421 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Punta, M. et al. The Pfam protein families database. Nucleic Acids Res. 40, D290–D301 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Pelzer, S., Wohlert, S.E. & Vente, A. Tool-box: tailoring enzymes for bio-combinatorial lead development and as markers for genome-based natural product lead discovery. Ernst Schering Res. Found. Workshop 51, 233–259 (2005).

    Article  CAS  Google Scholar 

  25. Weng, J.-K. & Noel, J.P. The remarkable pliability and promiscuity of specialized metabolism. Cold Spring Harb. Symp. Quant. Biol. 77, 309–320 (2012).

    Article  PubMed  Google Scholar 

  26. Cruz-Morales, P. et al. Recapitulation of the evolution of biosynthetic gene clusters reveals hidden chemical diversity on bacterial genomes. bioRxiv doi:10.1101/020503.

  27. Takeda, I., Umemura, M., Koike, H., Asai, K. & Machida, M. Motif-independent prediction of a secondary metabolism gene cluster using comparative genomics: application to sequenced genomes of Aspergillus and ten other filamentous fungal species. DNA Res. 21, 447–457 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arnison, P.G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. de Jong, A., van Hijum, S.A., Bijlsma, J.J., Kok, J. & Kuipers, O.P. BAGEL: a web-based bacteriocin genome mining tool. Nucleic Acids Res. 34, W273–W279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Jong, A., van Heel, A.J., Kok, J. & Kuipers, O.P. BAGEL2: mining for bacteriocins in genomic data. Nucleic Acids Res. 38, W647–W651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson, M.C. & Piel, J. Metagenomic approaches for exploiting uncultivated bacteria as a resource for novel biosynthetic enzymology. Chem. Biol. 20, 636–647 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Charlop-Powers, Z., Milshteyn, A. & Brady, S.F. Metagenomic small molecule discovery methods. Curr. Opin. Microbiol. 19, 70–75 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Reddy, B.V.B., Milshteyn, A., Charlop-Powers, Z. & Brady, S.F. eSNaPD: a versatile, web-based bioinformatics platform for surveying and mining natural product biosynthetic diversity from metagenomes. Chem. Biol. 21, 1023–1033 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Owen, J.G. et al. Mapping gene clusters within arrayed metagenomic libraries to expand the structural diversity of biomedically relevant natural products. Proc. Natl. Acad. Sci. USA 110, 11797–11802 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ziemert, N. et al. The natural product domain seeker NaPDoS: a phylogeny based bioinformatic tool to classify secondary metabolite gene diversity. PLoS ONE 7, e34064 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, D. et al. A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kampa, A. et al. Metagenomic natural product discovery in lichen provides evidence for a family of biosynthetic pathways in diverse symbioses. Proc. Natl. Acad. Sci. USA 110, E3129–E3137 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kwan, J.C. et al. Genome streamlining and chemical defense in a coral reef symbiosis. Proc. Natl. Acad. Sci. USA 109, 20655–20660 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F. & Corbeil, J. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Howe, A.C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. Proc. Natl. Acad. Sci. USA 111, 4904–4909 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Nielsen, H.B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Frasch, H.-J., Medema, M.H., Takano, E. & Breitling, R. Design-based re-engineering of biosynthetic gene clusters: plug-and-play in practice. Curr. Opin. Biotechnol. 24, 1144–1150 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Ziemert, N. et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc. Natl. Acad. Sci. USA 111, E1130–E1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doroghazi, J.R. et al. A roadmap for natural product discovery based on large-scale genomics and metabolomics. Nat. Chem. Biol. 10, 963–968 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yadav, G., Gokhale, R.S. & Mohanty, D. Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. J. Mol. Biol. 328, 335–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Rausch, C., Weber, T., Kohlbacher, O., Wohlleben, W. & Huson, D.H. Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res. 33, 5799–5808 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Minowa, Y., Araki, M. & Kanehisa, M. Comprehensive analysis of distinctive polyketide and nonribosomal peptide structural motifs encoded in microbial genomes. J. Mol. Biol. 368, 1500–1517 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Bachmann, B.O. & Ravel, J. Methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. Methods Enzymol. 458, 181–217 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Röttig, M. et al. NRPSpredictor2—a web server for predicting NRPS adenylation domain specificity. Nucleic Acids Res. 39, W362–W367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Prieto, C., Garcia-Estrada, C., Lorenzana, D. & Martin, J.F. NRPSsp: non-ribosomal peptide synthase substrate predictor. Bioinformatics 28, 426–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Khayatt, B.I., Overmars, L., Siezen, R.J. & Francke, C. Classification of the adenylation and acyl-transferase activity of NRPS and PKS systems using ensembles of substrate specific hidden Markov models. PLoS ONE 8, e62136 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Baranašić, D. et al. Predicting substrate specificity of adenylation domains of nonribosomal peptide synthetases and other protein properties by latent semantic indexing. J. Ind. Microbiol. Biotechnol. 41, 461–467 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Blin, K., Kazempour, D., Wohlleben, W. & Weber, T. Improved lanthipeptide detection and prediction for antiSMASH. PLoS ONE 9, e89420 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Medema, M.H. et al. The Minimum Information about a Biosynthetic Gene cluster (MIBiG) specification. Nat. Chem. Biol. 11, 625–631 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kersten, R.D. et al. A mass spectrometry-guided genome mining approach for natural product peptidogenomics. Nat. Chem. Biol. 7, 794–802 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kersten, R.D. et al. Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules. Proc. Natl. Acad. Sci. USA 110, E4407–E4416 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mohimani, H. et al. Automated genome mining of ribosomal peptide natural products. ACS Chem. Biol. 9, 1545–1551 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mohimani, H. et al. NRPquest: coupling mass spectrometry and genome mining for nonribosomal peptide discovery. J. Nat. Prod. 77, 1902–1909 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guthals, A., Watrous, J.D., Dorrestein, P.C. & Bandeira, N. The spectral networks paradigm in high throughput mass spectrometry. Mol. Biosyst. 8, 2535–2544 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Medema, M.H. et al. Pep2Path: automated mass spectrometry-guided genome mining of peptidic natural products. PLOS Comput. Biol. 10, e1003822 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nguyen, D.D. et al. MS/MS networking guided analysis of molecule and gene cluster families. Proc. Natl. Acad. Sci. USA 110, E2611–E2620 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schulze, C.J. et al. 'Function-first' lead discovery: mode of action profiling of natural product libraries using image-based screening. Chem. Biol. 20, 285–295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Potts, M.B. et al. Using functional signature ontology (FUSION) to identify mechanisms of action for natural products. Sci. Signal. 6, ra90 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Poulsen, M., Oh, D.-C., Clardy, J. & Currie, C.R. Chemical analyses of wasp-associated streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS ONE 6, e16763 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Piel, J. et al. Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J. Nat. Prod. 68, 472–479 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Yu, T.-W. et al. The biosynthetic gene cluster of the maytansinoid antitumor agent ansamitocin from Actinosynnema pretiosum. Proc. Natl. Acad. Sci. USA 99, 7968–7973 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cardenas, M.E. et al. Antifungal activities of antineoplastic agents: Saccharomyces cerevisiae as a model system to study drug action. Clin. Microbiol. Rev. 12, 583–611 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wilson, M.C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Crawford, J.M. & Clardy, J. Bacterial symbionts and natural products. Chem. Commun. (Camb.) 47, 7559–7566 (2011).

    Article  CAS  Google Scholar 

  73. Bode, H.B. Entomopathogenic bacteria as a source of secondary metabolites. Curr. Opin. Chem. Biol. 13, 224–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. van Heel, A.J., de Jong, A., Montalbán-López, M., Kok, J. & Kuipers, O.P. BAGEL3: Automated identification of genes encoding bacteriocins and (non-) bactericidal posttranslationally modified peptides. Nucleic Acids Res. 41, W448–W453 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Anand, S. et al. SBSPKS: structure based sequence analysis of polyketide synthases. Nucleic Acids Res. 8, W487–W496 (2010).

    Article  CAS  Google Scholar 

  76. Medema, M.H., Takano, E. & Breitling, R. Detecting sequence homology at the gene cluster level with MultiGeneBlast. Mol. Biol. Evol. 30, 1218–1223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mohimani, H. et al. Cycloquest: identification of cyclopeptides via database search of their mass spectra against genome databases. J. Proteome Res. 10, 4505–4512 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hadjithomas, M. et al. IMG-ABC: a knowledge base to fuel discovery of biosynthetic gene clusters and novel secondary metabolites. mBio. 6, e00932–15 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ichikawa, N. et al. DoBISCUIT: a database of secondary metabolite biosynthetic gene clusters. Nucleic Acids Res. 41, D408–D414 (2013).

    Article  CAS  PubMed  Google Scholar 

  80. Conway, K.R. & Boddy, C.N. ClusterMine360: a database of microbial PKS/NRPS biosynthesis. Nucleic Acids Res. 41, D402–D407 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Diminic, J. et al. Databases of the thiotemplate modular systems (CSDB) and their in silico recombinants (r-CSDB). J. Ind. Microbiol. Biotechnol. 40, 653–659 (2013).

    Article  CAS  PubMed  Google Scholar 

  82. Tae, H., Sohng, J.K. & Park, K. MapsiDB: an integrated web database for type I polyketide synthases. Bioprocess Biosyst. Eng. 32, 723–727 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Hastings, J. et al. The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res. 41, D456–D463 (2013).

    Article  CAS  PubMed  Google Scholar 

  84. Bento, A.P. et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42, D1083–D1090 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Nakamura, Y. et al. KNApSAcK metabolite activity database for retrieving the relationships between metabolites and biological activities. Plant Cell Physiol. 55, e7 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Wang, Y. et al. PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res. 37, W623–W633 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pence, H.E. & Williams, A. ChemSpider: an online chemical information resource. J. Chem. Educ. 87, 1123–1124 (2010).

    Article  CAS  Google Scholar 

  88. Caboche, S. et al. NORINE: a database of nonribosomal peptides. Nucleic Acids Res. 36, D326–D331 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Lucas, X. et al. StreptomeDB: a resource for natural compounds isolated from Streptomyces species. Nucleic Acids Res. 41, D1130–D1136 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Harborne, J.B. Dictionary of natural products. http://dnp.chemnetbase.com (Taylor & Francis, 2015).

  91. Weber, T. In silico tools for the analysis of antibiotic biosynthetic pathways. Int. J. Med. Microbiol. 304, 230–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Boddy, C.N. Bioinformatics tools for genome mining of polyketide and non-ribosomal peptides. J. Ind. Microbiol. Biotechnol. 41, 443–450 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Kurtz, S. et al. Versatile and open software for comparing large genomes. Genome Biol. 5, R12 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Lin, K., Zhu, L. & Zhang, D.Y. An initial strategy for comparing proteins at the domain architecture level. Bioinformatics 22, 2081–2086 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to P. Cimermancic, M. Donia and members of the Fischbach group for helpful conversations. This work was supported by a Rubicon grant of the Netherlands Organization for Scientific Research (NWO; Rubicon 825.13.001) to M.H.M. and by grants from the W.M. Keck Foundation (M.A.F.), the David and Lucile Packard Foundation (M.A.F.), the Glenn Foundation (M.A.F.), the Burroughs Wellcome Fund Investigators in the Pathogenesis of Infectious Disease program (M.A.F.), the Program for Breakthrough Biomedical Research (M.A.F.), US Defense Advanced Research Projects Agency (DARPA) award HR0011-12-C-0067 (M.A.F.) and US National Institutes of Health grants OD007290, AI101018, GM081879 and DK101674 (M.A.F.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marnix H Medema or Michael A Fischbach.

Ethics declarations

Competing interests

M.A.F. is on the scientific advisory boards of NGM Biopharmaceuticals and Warp Drive Bio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medema, M., Fischbach, M. Computational approaches to natural product discovery. Nat Chem Biol 11, 639–648 (2015). https://doi.org/10.1038/nchembio.1884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing