Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms

Abstract

Actin-targeting macrolides comprise a large, structurally diverse group of cytotoxins isolated from remarkably dissimilar micro- and macroorganisms. In spite of their disparate origins and structures, many of these compounds bind actin at the same site and exhibit structural relationships reminiscent of modular, combinatorial drug libraries. Here we investigate biosynthesis and evolution of three compound groups: misakinolides, scytophycin-type compounds and luminaolides. For misakinolides from the sponge Theonella swinhoei WA, our data suggest production by an uncultivated 'Entotheonella' symbiont, further supporting the relevance of these bacteria as sources of bioactive polyketides and peptides in sponges. Insights into misakinolide biosynthesis permitted targeted genome mining for other members, providing a cyanobacterial luminaolide producer as the first cultivated source for this dimeric compound family. The data indicate that this polyketide family is bacteria-derived and that the unusual macrolide diversity is the result of combinatorial pathway modularity for some compounds and of convergent evolution for others.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Selected structures of structurally related macrolides and their biological sources.
Figure 2: Unifying model for the biosynthesis of the actin-inhibitors misakinolide A, tolytoxin and luminaolides.
Figure 3: Colocalization of 'Entotheonella' and misakinolide A using a combination of CARD-FISH and HR-IMS.
Figure 4: HPLC profiles of test reactions investigating PS-catalyzed tetrahydropyran formation.
Figure 5: Evolutive relationships of the rhizopodin (riz), luminaolide (lum), scytophycin and tolytoxin (tto) and misakinolide (mis) PKS systems.

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. 1

    Allingham, J.S., Klenchin, V.A. & Rayment, I. Actin-targeting natural products: structures, properties and mechanisms of action. Cell. Mol. Life Sci. 63, 2119–2134 (2006).

    CAS  PubMed  Google Scholar 

  2. 2

    Sasse, F., Steinmetz, H., Höfle, G. & Reichenbach, H. Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. J. Antibiot. 46, 741–748 (1993).

    CAS  PubMed  Google Scholar 

  3. 3

    Ishibashi, M., Moore, R.E., Patterson, G.M.L., Xu, C.F. & Clardy, J. Scytophycins, cytotoxic and antimycotic agents from the cyanophyte Scytonema pseudohofmanni. J. Org. Chem. 51, 5300–5306 (1986).

    CAS  Google Scholar 

  4. 4

    Andrianasolo, E.H. et al. Isolation of swinholide A and related glycosylated derivatives from two field collections of marine cyanobacteria. Org. Lett. 7, 1375–1378 (2005).

    CAS  PubMed  Google Scholar 

  5. 5

    Sakai, R., Higa, T. & Kashman, Y. Misakinolide A, an antitumor macrolide from the marine sponge Theonella sp. Chem. Lett. 15, 1499–1502 (1986).

    Google Scholar 

  6. 6

    D'Auria, M.V. et al. Reidispongiolide A and reidispongiolide B, 2 new potent cytotoxic macrolides from the New Caledonian sponge Reidispongia coerulea. Tetrahedron 50, 4829–4834 (1994).

    CAS  Google Scholar 

  7. 7

    Kernan, M.R. & Faulkner, D.J. Halichondramide, an antifungal macrolide from the sponge Halichondria sp. Tetrahedr. Lett. 28, 2809–2812 (1987).

    CAS  Google Scholar 

  8. 8

    Matsunaga, S., Fusetani, N., Hashimoto, K., Koseki, K. & Noma, M. Kabiramide C, a novel antifungal macrolide from nudibranch eggmasses. J. Am. Chem. Soc. 108, 847–849 (1986).

    CAS  Google Scholar 

  9. 9

    Guella, G., Mancini, I., Chiasera, G. & Pietra, F. Sphinxolide, a 26-membered antitumoral macrolide isolated from an unidentified Pacific nudibranch. Helv. Chim. Acta 72, 237–246 (1989).

    CAS  Google Scholar 

  10. 10

    Yamada, K. et al. Aplyronine A, a potent antitumor substance, and the congeners aplyronine B and aplyronine C isolated from the sea hare Aplysia kurodai. J. Am. Chem. Soc. 115, 11020–11021 (1993).

    CAS  Google Scholar 

  11. 11

    Rashid, M.A., Gustafson, K.R., Cardellina, J.H. & Boyd, M.R. Mycalolide D and mycalolide E, new cytotoxic macrolides from a collection of the stony coral Tubastrea faulkneri. J. Nat. Prod. 58, 1120–1125 (1995).

    CAS  PubMed  Google Scholar 

  12. 12

    Kubanek, J. et al. Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA 100, 6916–6921 (2003).

    CAS  PubMed  Google Scholar 

  13. 13

    Kitamura, M., Schupp, P.J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedr. Lett. 50, 6606–6609 (2009).

    CAS  Google Scholar 

  14. 14

    Bewley, C.A. & Faulkner, D.J. Lithistid sponges: star performers or hosts to the stars. Angew. Chem. Int. Ed. 37, 2163–2178 (1998).

    CAS  Google Scholar 

  15. 15

    Piel, J. et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc. Natl. Acad. Sci. USA 101, 16222–16227 (2004).

    CAS  PubMed  Google Scholar 

  16. 16

    Freeman, M.F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Wilson, M.C. et al. An environmental bacterial taxon with a large and distinct metabolic repertoire. Nature 506, 58–62 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Bewley, C.A., Holland, N.D. & Faulkner, D.J. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716–722 (1996).

    CAS  PubMed  Google Scholar 

  19. 19

    Schmidt, E.W., Obraztsova, A.Y., Davidson, S.K., Faulkner, D.J. & Haygood, M.G. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis”. Mar. Biol. 136, 969–977 (2000).

    CAS  Google Scholar 

  20. 20

    Hertweck, C. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. Engl. 48, 4688–4716 (2009).

    CAS  PubMed  Google Scholar 

  21. 21

    Piel, J. Biosynthesis of polyketides by trans-AT polyketide synthases. Nat. Prod. Rep. 27, 996–1047 (2010).

    CAS  PubMed  Google Scholar 

  22. 22

    Nguyen, T. et al. Exploiting the mosaic structure of trans-acyltransferase polyketide synthases for natural product discovery and pathway dissection. Nat. Biotechnol. 26, 225–233 (2008).

    CAS  PubMed  Google Scholar 

  23. 23

    Piel, J. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc. Natl. Acad. Sci. USA 99, 14002–14007 (2002).

    CAS  PubMed  Google Scholar 

  24. 24

    Sudek, S. et al. Identification of the putative bryostatin polyketide synthase gene cluster from “Candidatus Endobugula sertula”, the uncultivated microbial symbiont of the marine bryozoan Bugula neritina. J. Nat. Prod. 70, 67–74 (2007).

    CAS  PubMed  Google Scholar 

  25. 25

    Partida-Martinez, L.P. & Hertweck, C. Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437, 884–888 (2005).

    CAS  PubMed  Google Scholar 

  26. 26

    Fisch, K.M. et al. Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. Nat. Chem. Biol. 5, 494–501 (2009).

    CAS  PubMed  Google Scholar 

  27. 27

    Donia, M.S. et al. Complex microbiome underlying secondary and primary metabolism in the tunicate-Prochloron symbiosis. Proc. Natl. Acad. Sci. USA 108, E1423–E1432 (2011).

    CAS  PubMed  Google Scholar 

  28. 28

    Hrvatin, S. & Piel, J. Rapid isolation of rare clones from highly complex DNA libraries by PCR analysis of liquid gel pools. J. Microbiol. Methods 68, 434–436 (2007).

    CAS  PubMed  Google Scholar 

  29. 29

    Binga, E.K., Lasken, R.S. & Neufeld, J.D. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J. 2, 233–241 (2008).

    CAS  PubMed  Google Scholar 

  30. 30

    Richter, M. & Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106, 19126–19131 (2009).

    CAS  PubMed  Google Scholar 

  31. 31

    Yang, J.Y. et al. Primer on agar-based microbial imaging mass spectrometry. J. Bacteriol. 194, 6023–6028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Irschik, H. et al. Analysis of the sorangicin gene cluster reinforces the utility of a combined phylogenetic/retrobiosynthetic analysis for deciphering natural product assembly by trans-AT PKS. ChemBioChem 11, 1840–1849 (2010).

    CAS  PubMed  Google Scholar 

  33. 33

    Teta, R. et al. Genome mining reveals trans-AT polyketide synthase directed antibiotic biosynthesis in the bacterial phylum Bacteroidetes. ChemBioChem 11, 2506–2512 (2010).

    CAS  PubMed  Google Scholar 

  34. 34

    Pistorius, D. & Müller, R. Discovery of the rhizopodin biosynthetic gene cluster in Stigmatella aurantiaca Sg a15 by genome mining. ChemBioChem 13, 416–426 (2012).

    CAS  PubMed  Google Scholar 

  35. 35

    Elshahawi, S.I. et al. Boronated tartrolon antibiotic produced by symbiotic cellulose-degrading bacteria in shipworm gills. Proc. Natl. Acad. Sci. USA 110, E295–E304 (2013).

    CAS  PubMed  Google Scholar 

  36. 36

    Caffrey, P. Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases. ChemBioChem 4, 654–657 (2003).

    CAS  PubMed  Google Scholar 

  37. 37

    Reid, R. et al. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. Biochemistry 42, 72–79 (2003).

    CAS  PubMed  Google Scholar 

  38. 38

    Keatinge-Clay, A. Crystal structure of the erythromycin polyketide synthase dehydratase. J. Mol. Biol. 384, 941–953 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Pöplau, P., Frank, S., Morinaka, B.I. & Piel, J. An enzymatic domain for the formation of cyclic ethers in complex polyketides. Angew. Chem. Int. Ed. Engl. 52, 13215–13218 (2013).

    PubMed  Google Scholar 

  40. 40

    Carmeli, S., Moore, R.E. & Patterson, G.M.L. Tolytoxin and new scytophycins from 3 species of Scytonema. J. Nat. Prod. 53, 1533–1542 (1990).

    CAS  PubMed  Google Scholar 

  41. 41

    O'Brien, R.V., Davis, R.W., Khosla, C. & Hillenmeyer, M.E. Computational identification and analysis of orphan assembly-line polyketide synthases. J. Antibiot. 67, 89–97 (2014).

    CAS  PubMed  Google Scholar 

  42. 42

    Berkhan, G. & Hahn, F. A dehydratase domain in ambruticin biosynthesis displays additional activity as a pyran-forming cyclase. Angew. Chem. Int. Ed. Engl. 53, 14240–14244 (2014).

    CAS  PubMed  Google Scholar 

  43. 43

    Wakimoto, T. et al. Calyculin biogenesis from a pyrophosphate protoxin produced by a sponge symbiont. Nat. Chem. Biol. 10, 648–655 (2014).

    CAS  PubMed  Google Scholar 

  44. 44

    Kampa, A. et al. Metagenomic natural product discovery in lichen provides evidence for specialized biosynthetic pathways in diverse symbioses. Proc. Natl. Acad. Sci. USA 110, E3129–E3137 (2013).

    CAS  PubMed  Google Scholar 

  45. 45

    Nakabachi, A. et al. Defensive bacteriome symbiont with a drastically reduced genome. Curr. Biol. 23, 1478–1484 (2013).

    CAS  PubMed  Google Scholar 

  46. 46

    Jenke-Kodama, H., Sandmann, A., Müller, R. & Dittmann, E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 22, 2027–2039 (2005).

    CAS  PubMed  Google Scholar 

  47. 47

    Jenner, M. et al. Substrate specificity in ketosynthase domains from trans-AT polyketide synthases. Angew. Chem. Int. Ed. Engl. 52, 1143–1147 (2013).

    CAS  PubMed  Google Scholar 

  48. 48

    Kohlhaas, C. et al. Amino acid-accepting ketosynthase domain from a trans-AT polyketide synthase exhibits high selectivity for predicted intermediate. Chem. Sci. 4, 3212–3217 (2013).

    CAS  Google Scholar 

  49. 49

    Jenner, M. et al. Acyl-chain elongation drives ketosynthase substrate selectivity in trans-acyltransferase polyketide synthases. Angew. Chem. Int. Ed. Engl. 54, 1817–1821 (2015).

    CAS  PubMed  Google Scholar 

  50. 50

    Perrins, R.D., Cecere, G., Paterson, I. & Marriott, G. Synthetic mimetics of actin-binding macrolides: Rational design of actin-targeted drugs. Chem. Biol. 15, 287–294 (2008).

    CAS  PubMed  Google Scholar 

  51. 51

    Garcia-Pichel, F. & Castenholz, R.W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27, 395–409 (1991).

    CAS  Google Scholar 

  52. 52

    Gaget, V., Welker, M., Rippka, R. & de Marsac, N.T. A polyphasic approach leading to the revision of the genus Planktothrix (Cyanobacteria) and its type species, P. agardhii, and proposal for integrating the emended valid botanical taxa, as well as three new species, Planktothrix paucivesiculata sp. nov.ICNP, Planktothrix tepida sp. nov.ICNP, and Planktothrix serta sp. nov.ICNP, as genus and species names with nomenclatural standing under the ICNP. Syst. Appl. Microbiol. 38, 141–158 (2015).

    PubMed  Google Scholar 

  53. 53

    Rippka, R., Deruelles, J., Waterbury, J.B., Herdman, M. & Stanier, R.Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1–61 (1979).

    Google Scholar 

  54. 54

    Spiegel, M. & Rubinstein, N.A. Synthesis of RNA by dissociated cells of sea urchin embryo. Exp. Cell Res. 70, 423–430 (1972).

    CAS  PubMed  Google Scholar 

  55. 55

    Yilmaz, L.S., Pamerkar, S. & Noguera, D.R. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl. Environ. Microbiol. 77, 1118–1122 (2011).

    CAS  PubMed  Google Scholar 

  56. 56

    Schramm, A., Fuchs, B.M., Nielsen, J.L., Tonolla, M. & Stahl, D.A. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4, 713–720 (2002).

    CAS  PubMed  Google Scholar 

  57. 57

    Wetmur, J.G. DNA probes: applications of the principles of nucleic acid hybridization. Crit. Rev. Biochem. Mol. Biol. 26, 227–259 (1991).

    CAS  PubMed  Google Scholar 

  58. 58

    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Watrous, J. et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. USA 109, E1743–E1752 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Wakimoto and K. Takada for providing sponge samples, D. Uemura for a generous sample of luminaolide, M. Wilson for sequence analysis and naming of 'Entotheonella serta', C. Maufrais and A. Criscuolo from the Bioinformatic Plateform of the Institut Pasteur for help in ANI calculation, and J. Pernthaler for helpful discussion and for providing material for CARD-FISH experiments. We are also grateful to Y.I. Park and J.-F. Humbert for the use of cyanobacterial genomes. This work was funded by grants of the SNF (IZLSZ3_149025), and the EU (BlueGenics and BluePharmTrain) to J.P., by the Institut Pasteur to M.G., by an Alexander von Humboldt Research Fellowship to R.U. and by a DAAD fellowship to A.R.U.

Author information

Affiliations

Authors

Contributions

R.U. isolated and characterized polyketides from cyanobacteria, A.R.U. performed the genetic work on misakinolide, S.R. performed the phylogenetic studies, T.M. and H.T. conducted the single-cell experiments, P.K. expressed and assayed the misakinolide PS domain, B.I.M. characterized the PS product, E.E.P. conducted the CARD-FISH experiments, E.J.N.H. performed MS analysis including imaging, M.G. cultivated and sequenced cyanobacteria and performed ANI calculations, S.M. provided and analyzed sponge chemotypes, J.P. analyzed PKS sequences and predicted polyketide structures, all authors designed research, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Jörn Piel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Results, Supplementary Figures 1–26 and Supplementary Tables 1–6. (PDF 2339 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ueoka, R., Uria, A., Reiter, S. et al. Metabolic and evolutionary origin of actin-binding polyketides from diverse organisms. Nat Chem Biol 11, 705–712 (2015). https://doi.org/10.1038/nchembio.1870

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing