Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A biosynthetic pathway for a prominent class of microbiota-derived bile acids

Abstract

The gut bile acid pool is millimolar in concentration, varies widely in composition among individuals and is linked to metabolic disease and cancer. Although these molecules are derived almost exclusively from the microbiota, remarkably little is known about which bacterial species and genes are responsible for their biosynthesis. Here we report a biosynthetic pathway for the second most abundant class in the gut, 3β-hydroxy(iso)-bile acids, whose levels exceed 300 μM in some humans and are absent in others. We show, for the first time, that iso–bile acids are produced by Ruminococcus gnavus, a far more abundant commensal than previously known producers, and that the iso–bile acid pathway detoxifies deoxycholic acid and thus favors the growth of the keystone genus Bacteroides. By revealing the biosynthetic genes for an abundant class of bile acids, our work sets the stage for predicting and rationally altering the composition of the bile acid pool.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemical transformations of bile acids by gut bacteria.
Figure 2: Elucidation of the biosynthetic pathway for isoDCA formation in E. lenta and R. gnavus.
Figure 3: IsoDCA is less bacteriostatic than DCA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ridlon, J.M., Kang, D.J. & Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    Article  CAS  Google Scholar 

  2. Hamilton, J.P. et al. Human cecal bile acids: concentration and spectrum. Am. J. Physiol. Gastrointest. Liver Physiol. 293, G256–G263 (2007).

    Article  CAS  Google Scholar 

  3. Macdonald, I.A., Bokkenheuser, V.D., Winter, J., McLernon, A.M. & Mosbach, E.H. Degradation of steroids in the human gut. J. Lipid Res. 24, 675–700 (1983).

    CAS  PubMed  Google Scholar 

  4. Hofmann, A.F. et al. A proposed nomenclature for bile acids. J. Lipid Res. 33, 599–604 (1992).

    CAS  PubMed  Google Scholar 

  5. Setchell, K.D.R., Lawson, A.M., Tanida, N. & Sjovall, J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J. Lipid Res. 24, 1085–1100 (1983).

    CAS  PubMed  Google Scholar 

  6. Thomas, C., Pellicciari, R., Pruzanski, M., Auwerx, J. & Schoonjans, K. Targeting bile-acid signalling for metabolic diseases. Nat. Rev. Drug Discov. 7, 678–693 (2008).

    Article  CAS  Google Scholar 

  7. Makishima, M. et al. Vitamin D receptor as an intestinal bile acid sensor. Science 296, 1313–1316 (2002).

    Article  CAS  Google Scholar 

  8. Talukdar, S., Bhatnagar, S., Dridi, S. & Hillgartner, F.B. Chenodeoxycholic acid suppresses the activation of acetyl–coenzyme A carboxylase–alpha gene transcription by the liver X receptor agonist T0–901317. J. Lipid Res. 48, 2647–2663 (2007).

    Article  CAS  Google Scholar 

  9. Buffie, C.G. et al. Precision microbiome reconstitution restores bile acid–mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    Article  CAS  Google Scholar 

  10. Reddy, B.S., Narisawa., T., Weisenburger, J.H. & Wynder, E.L. Promoting effect of sodium deoxycholate on colon adenocarcinomas in germfree rats. J. Natl. Cancer Inst. 56, 441–442 (1976).

    Article  CAS  Google Scholar 

  11. Narisawa, T., Magadia, N.E., Weisburger, J.H. & Wynder, E.L. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N′-nitro-N-nitrosoguanidine in rats. J. Natl. Cancer Inst. 53, 1093–1097 (1974).

    Article  CAS  Google Scholar 

  12. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  CAS  Google Scholar 

  13. Rafter, J.J. et al. Cellular toxicity of fecal water depends on diet. Am. J. Clin. Nutr. 45, 559–563 (1987).

    Article  CAS  Google Scholar 

  14. Reddy, B.S., Weisenburger, J.H. & Wynder, E.L. Effects of high risk and low risk diets for colon carcinogenesis on fecal microflora and steroids in man. J. Nutr. 105, 878–884 (1975).

    Article  CAS  Google Scholar 

  15. Im, E. & Martinez, J.D. Ursodeoxycholic acid (UDCA) can inhibit deoxycholic acid (DCA)-induced apoptosis via modulation of EGFR/Raf-1/ERK signaling in human colon cancer cells. J. Nutr. 134, 483–486 (2004).

    Article  CAS  Google Scholar 

  16. Bachrach, W.H. & Hofmann, A.F. Ursodeoxycholic acid in the treatment of cholesterol cholelithiasis. Part I. Dig. Dis. Sci. 27, 737–761 (1982).

    Article  CAS  Google Scholar 

  17. Bennett, M.J., McKnight, S.L. & Coleman, J.P. Cloning and characterization of the NAD-dependent 7α-hydroxysteroid dehydrogenase from Bacteroides fragilis. Curr. Microbiol. 47, 475–484 (2003).

    Article  CAS  Google Scholar 

  18. Liu, L., Aigner, A. & Schmid, R.D. Identification, cloning, heterologous expression and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl. Microbiol. Biotechnol. 90, 127–135 (2011).

    Article  CAS  Google Scholar 

  19. Baron, S.F., Franklund, C.V. & Hylemon, P.B. Cloning, sequencing and expression of the gene encoding for bile acid 7α-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. J. Bacteriol. 173, 4558–4569 (1991).

    Article  CAS  Google Scholar 

  20. Coleman, J.P., Hudson, L.L. & Adams, M.J. Characterization and regulation of the NADP-linked 7α-hydroxysteroid dehydrogenase gene from Clostridium sordellii. J. Bacteriol. 176, 4865–4874 (1994).

    Article  CAS  Google Scholar 

  21. Lee, J.Y. et al. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res. 54, 3062–3069 (2013).

    Article  CAS  Google Scholar 

  22. Hirano, S. & Masuda, N. Transformation of bile acids by Eubacterium lentum. Appl. Environ. Microbiol. 42, 912–915 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hirano, S., Masuda, N., Oda, H. & Mukai, H. Transformation of bile acids by Clostridium perfringens. Appl. Environ. Microbiol. 42, 394–399 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Macdonald, I.A. et al. Metabolism of primary bile acids by Clostridium perfringens. J. Steroid Biochem. 18, 97–104 (1983).

    Article  CAS  Google Scholar 

  25. Hayakawa, S. Microbiological transformation of bile acids. Adv. Lipid Res. 11, 143–192 (1973).

    Article  CAS  Google Scholar 

  26. Macdonald, I.A., Meier, E.C., Mahony, D.E. & Costain, G.A. 3α-, 7α-, and 12α-hydroxysteroid dehydrogenase activity from Clostridium perfringens. Biochim. Biophys. Acta 450, 142–153 (1976).

    Article  CAS  Google Scholar 

  27. MacDonald, I.A., Jellett, J.F., Mahony, D.E. & Holdeman, L.V. Bile salt 3α- and 12α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl. Environ. Microbiol. 37, 992–1000 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. MacDonald, I.A., Mahony, D.E., Jellet, J.F. & Meier, C.E. NAD-dependent 3α- and 12α-hydroxysteroid dehydrogenase activities from Eubacterium lentum ATCC no. 25559. Biochim. Biophys. Acta 489, 466–476 (1977).

    Article  CAS  Google Scholar 

  29. Edenharder, R., Pfutzner, A. & Hammann, R. Characterization of NAD-dependent 3α- and 3β-hydroxysteroid dehydrogenase and of NADP-dependent 7β-hydroxysteroid dehydrogenase from Peptostreptococcus productus. Biochim. Biophys. Acta 1004, 230–238 (1989).

    Article  CAS  Google Scholar 

  30. Edenharder, R., Pfutzner, A. & Hammann, R. NADP-dependent 3β-, 7α- and 7β-hydroxysteroid dehydrogenase activities from a lecithinase-lipase–negative Clostridium species 25.11.c. Biochim. Biophys. Acta 1002, 37–44 (1989).

    Article  CAS  Google Scholar 

  31. Akao, T., Akao, T., Hattori, M., Namba, T. & Kobashi, K. 3β-hydroxysteroid dehydrogenase of Ruminococcus sp. from human intestinal bacteria. J. Biochem. 99, 1425–1431 (1986).

    Article  CAS  Google Scholar 

  32. Kraal, L., Abubucker, S., Kota, K., Fischbach, M.A. & Mitreva, M. The prevalence of species and strains in the human microbiome: a resource for experimental efforts. PLoS ONE 9, e97279 (2014).

    Article  Google Scholar 

  33. Wells, J.E. & Hylemon, P.B. Identification and characterization of a bile acid 7α-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7α-dehydroxylating strain isolated from human feces. Appl. Environ. Microbiol. 66, 1107–1113 (2000).

    Article  CAS  Google Scholar 

  34. Mallonee, D.H., Lijewski, M.A. & Hylemon, P.B. Expression in Escherichia coli and characterization of a bile acid–inducible 3α-hydroxysteroid dehydrogenase from Eubacterium sp. strain VPI 12708. Curr. Microbiol. 30, 259–263 (1995).

    Article  CAS  Google Scholar 

  35. Ridlon, J.M., Kang, D. & Hylemon, P.B. Isolation and characterization of a bile acid inducible 7α-dehydroxylating operon in Clostridium hylemonae TN271. Anaerobe 16, 137–146 (2010).

    Article  CAS  Google Scholar 

  36. Begley, M., Gahan, C.G.M. & Hill, C. The interaction between bacteria and bile. FEMS Microbiol. Rev. 29, 625–651 (2005).

    Article  CAS  Google Scholar 

  37. Matsuoka, K. & Moroi, Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (part 1). Biochim. Biophys. Acta 1580, 189–199 (2002).

    Article  CAS  Google Scholar 

  38. Gómez Zavaglia, A., Kociubinski, G., Perez, P., Disalvo, E. & De Antoni, G. Effect of bile on the lipid composition and surface properties of bifidobacteria. J. Appl. Microbiol. 93, 794–799 (2002).

    Article  Google Scholar 

  39. Noh, D.O. & Gilliland, S.E. Influence of bile on cellular integrity and β-galactosidase activity of Lactobacillus acidophilus. J. Dairy Sci. 76, 1253–1259 (1993).

    Article  CAS  Google Scholar 

  40. Maurice, C.F., Haiser, H.J. & Turnbaugh, P.J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    Article  CAS  Google Scholar 

  41. Holdeman, L.V. & Moore, W.E.C. New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces. Int. J. Syst. Bacteriol. 24, 260–277 (1974).

    Article  Google Scholar 

  42. Lawson, A.M. & Setchell, K.D.R. The Bile Acids: Chemistry, Physiology and Metabolism Vol. 4 (eds. Setchell, K.D.R., Kritchevsky, D. & Nair, P.P.) 167–267 (Plenum Press, New York, USA, 1988).

  43. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  Google Scholar 

  44. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  Google Scholar 

  45. Letunic, I. & Bork, P. Interactive tree of life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478 (2011).

    Article  CAS  Google Scholar 

  46. Stiefel, P., Schmidt-Emrich, S., Maniura-Weber, K. & Ren, Q. Critical aspects of using bacterial cell viability assays with the fluorophores SYTO9 and propidium iodide. BMC Microbiol. 15, 36 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Turnbaugh (UCSF) for helpful discussions, to A. Hofmann (UCSD) for helpful discussions and for providing an initial sample of isoDCA and to T. Iida (Nihon University) for providing us with an authentic sample of 12-epi-isoDCA. We thank P.O. de Montellano for use of his GC-MS, Y. Varma for background research and experimentation on bile acids, P. Cimermancic for help with the phylogenetic analysis and members of the Fischbach group for helpful discussions. This research was supported by an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund (M.A.F.), a Glenn Award for Research in Biological Mechanisms of Aging (M.A.F.), a Medical Research Program grant from the W.M. Keck Foundation (M.A.F.), a Fellowship for Science and Engineering from the David and Lucile Packard Foundation (M.A.F.) and US National Institutes of Health grants OD007290 and GM081879 (M.A.F.).

Author information

Authors and Affiliations

Authors

Contributions

A.S.D. and M.A.F. conceived the project, designed the experiments and wrote the manuscript. A.S.D. performed the experiments.

Corresponding author

Correspondence to Michael A Fischbach.

Ethics declarations

Competing interests

M.A.F. is on the scientific advisory board of NGM Biopharmaceuticals.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–14 and Supplementary Tables 1–4. (PDF 14755 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devlin, A., Fischbach, M. A biosynthetic pathway for a prominent class of microbiota-derived bile acids. Nat Chem Biol 11, 685–690 (2015). https://doi.org/10.1038/nchembio.1864

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1864

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology