Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

siRNA screen identifies QPCT as a druggable target for Huntington's disease

Abstract

Huntington's disease (HD) is a currently incurable neurodegenerative condition caused by an abnormally expanded polyglutamine tract in huntingtin (HTT). We identified new modifiers of mutant HTT toxicity by performing a large-scale 'druggable genome' siRNA screen in human cultured cells, followed by hit validation in Drosophila. We focused on glutaminyl cyclase (QPCT), which had one of the strongest effects on mutant HTT-induced toxicity and aggregation in the cell-based siRNA screen and also rescued these phenotypes in Drosophila. We found that QPCT inhibition induced the levels of the molecular chaperone αB-crystallin and reduced the aggregation of diverse proteins. We generated new QPCT inhibitors using in silico methods followed by in vitro screening, which rescued the HD-related phenotypes in cell, Drosophila and zebrafish HD models. Our data reveal a new HD druggable target affecting mutant HTT aggregation and provide proof of principle for a discovery pipeline from druggable genome screen to drug development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Downregulation of QPCT in flies rescues HD toxicity.
Figure 2: QPCT modulates HTT toxicity and aggregation in mammalian cell lines and primary neurons.
Figure 3: Design of QPCT inhibitors that reduce mutant HTT aggregation.
Figure 4: QPCT inhibition induces alpha B-crystallin levels.
Figure 5: Pharmacologic inhibition of QPCT in fly.
Figure 6: Pharmacologic inhibition of QPCT in zebrafish.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Imarisio, S. et al. Huntington's disease: from pathology and genetics to potential therapies. Biochem. J. 412, 191–209 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Zuccato, C., Valenza, M. & Cattaneo, E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol. Rev. 90, 905–981 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  4. Mangiarini, L. et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87, 493–506 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Hodgson, J.G. et al. A YAC mouse model for Huntington's disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23, 181–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Soto, C. & Estrada, L.D. Protein misfolding and neurodegeneration. Arch. Neurol. 65, 184–189 (2008).

    Article  PubMed  Google Scholar 

  7. Takahashi, T. et al. Soluble polyglutamine oligomers formed prior to inclusion body formation are cytotoxic. Hum. Mol. Genet. 17, 345–356 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Lajoie, P. & Snapp, E.L. Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS ONE 5, e15245 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hartl, F.U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Sathasivam, K. et al. Aberrant splicing of HTT generates the pathogenic exon 1 protein in Huntington disease. Proc. Natl. Acad. Sci. USA 110, 2366–2370 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bleicher, K.H., Böhm, H.-J., Müller, K. & Alanine, A.I. Hit and lead generation: beyond high-throughput screening. Nat. Rev. Drug Discov. 2, 369–378 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Li, M., Huang, Y., Ma, A.A.K., Lin, E. & Diamond, M.I. Y-27632 improves rotarod performance and reduces huntingtin levels in R6/2 mice. Neurobiol. Dis. 36, 413–420 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Marsh, J.L. et al. Expanded polyglutamine peptides alone are intrinsically cytotoxic and cause neurodegeneration in Drosophila. Hum. Mol. Genet. 9, 13–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Dietzl, G. et al. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448, 151–156 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Schilling, S. et al. Isolation and characterization of glutaminyl cyclases from Drosophila: evidence for enzyme forms with different subcellular localization. Biochemistry 46, 10921–10930 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Jackson, G.R. et al. Polyglutamine-expanded human huntingtin transgenes induce degeneration of Drosophila photoreceptor neurons. Neuron 21, 633–642 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Franceschini, N. & Kirschfeld, K. Pseudopupil phenomena in the compound eye of Drosophila. Kybernetik 9, 159–182 (1971).

    Article  CAS  PubMed  Google Scholar 

  18. Ravikumar, B. et al. Dynein mutations impair autophagic clearance of aggregate-prone proteins. Nat. Genet. 37, 771–776 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, S., Binari, R., Zhou, R. & Perrimon, N. A genomewide RNA interference screen for modifiers of aggregates formation by mutant Huntingtin in Drosophila. Genetics 184, 1165–1179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wyttenbach, A. et al. Effects of heat shock, heat shock protein 40 (HDJ-2), and proteasome inhibition on protein aggregation in cellular models of Huntington's disease. Proc. Natl. Acad. Sci. USA 97, 2898–2903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cynis, H. et al. Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim. Biophys. Acta 1764, 1618–1625 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Saido, T.C. Involvement of polyglutamine endolysis followed by pyroglutamate formation in the pathogenesis of triplet repeat/polyglutamine-expansion diseases. Med. Hypotheses 54, 427–429 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Onodera, O. et al. Oligomerization of expanded-polyglutamine domain fluorescent fusion proteins in cultured mammalian cells. Biochem. Biophys. Res. Commun. 238, 599–605 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Rankin, J., Wyttenbach, A. & Rubinsztein, D.C. Intracellular green fluorescent protein–polyalanine aggregates are associated with cell death. Biochem. J. 348, 15–19 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo, S., Mizuta, H. & Rubinsztein, D.C. p21-activated kinase 1 promotes soluble mutant huntingtin self-interaction and enhances toxicity. Hum. Mol. Genet. 17, 895–905 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Buchholz, M. et al. The first potent inhibitors for human glutaminyl cyclase: synthesis and structure-activity relationship. J. Med. Chem. 49, 664–677 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Schilling, S. et al. Glutaminyl cyclase inhibition attenuates pyroglutamate Aβ and Alzheimer's disease–like pathology. Nat. Med. 14, 1106–1111 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Schilling, S. et al. Continuous spectrometric assays for glutaminyl cyclase activity. Anal. Biochem. 303, 49–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Yoon, S. & Welsh, W.J. Identification of a minimal subset of receptor conformations for improved multiple conformation docking and two-step scoring. J. Chem. Inf. Comput. Sci. 44, 88–96 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Polgár, T. & Keserü, G.M. Ensemble docking into flexible active sites. Critical evaluation of FlexE against JNK-3 and β-secretase. J. Chem. Inf. Model. 46, 1795–1805 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Huang, K.-F., Liu, Y.-L., Cheng, W.-J., Ko, T.-P. & Wang, A.H.-J. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc. Natl. Acad. Sci. USA 102, 13117–13122 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huang, K.-F. et al. Structures of human Golgi-resident glutaminyl cyclase and its complexes with inhibitors reveal a large loop movement upon inhibitor binding. J. Biol. Chem. 286, 12439–12449 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ruiz-Carrillo, D. et al. Structures of glycosylated mammalian glutaminyl cyclases reveal conformational variability near the active center. Biochemistry 50, 6280–6288 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Jones, G., Willett, P. & Glen, R.C. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J. Mol. Biol. 245, 43–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Jones, G., Willett, P., Glen, R.C., Leach, A.R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 267, 727–748 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W. & Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins 52, 609–623 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Palm, K., Luthman, K., Ros, J., Grasjo, J. & Artursson, P. Effect of molecular charge on intestinal epithelial drug transport: pH-dependent transport of cationic drugs. J. Pharmacol. Exp. Ther. 291, 435–443 (1999).

    CAS  PubMed  Google Scholar 

  38. Song, H. et al. Inhibition of glutaminyl cyclase ameliorates amyloid pathology in an animal model of Alzheimer's disease via the modulation of γ-secretase activity. J. Alzheimers Dis. 43, 797–807 (2014).

    Article  CAS  Google Scholar 

  39. Robertson, A.L. et al. Small heat-shock proteins interact with a flanking domain to suppress polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 107, 10424–10429 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Bilen, J. & Bonini, N.M. Drosophila as a model for human neurodegenerative disease. Annu. Rev. Genet. 39, 153–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Tue, N.T., Shimaji, K., Tanaka, N. & Yamaguchi, M. Effect of αB-crystallin on protein aggregation in Drosophila. J. Biomed. Biotechnol. 2012, 252049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295–305 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lejeune, F.-X. et al. Large-scale functional RNAi screen in C. elegans identifies genes that regulate the dysfunction of mutant polyglutamine neurons. BMC Genomics 13, 91 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller, J.P. et al. Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. Neuron 67, 199–212 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Miller, J.P. et al. A genome-scale RNA-interference screen identifies RRAS signaling as a pathologic feature of Huntington's disease. PLoS Genet. 8, e1003042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamanaka, T. et al. Large-scale RNA interference screening in mammalian cells identifies novel regulators of mutant huntingtin aggregation. PLoS ONE 9, e93891 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Waudby, C.A. et al. The interaction of αB-crystallin with mature α-synuclein amyloid fibrils inhibits their elongation. Biophys. J. 98, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Raman, B. et al. αB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid β-peptide and β2-microglobulin. Biochem. J. 392, 573–581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hochberg, G.K.A. et al. The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc. Natl. Acad. Sci. USA 111, E1562–E1570 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Freeman, M. Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell 87, 651–660 (1996).

    Article  CAS  PubMed  Google Scholar 

  51. Narain, Y., Wyttenbach, A., Rankin, J., Furlong, R.A. & Rubinsztein, D.C. A molecular investigation of true dominance in Huntington's disease. J. Med. Genet. 36, 739–746 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. D'Agostino, M. et al. The cytosolic chaperone α-crystallin B rescues folding and compartmentalization of misfolded multispan transmembrane proteins. J. Cell Sci. 126, 4160–4172 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Renna, M., Caporaso, M.G., Bonatti, S., Kaufman, R.J. & Remondelli, P. Regulation of ERGIC-53 gene transcription in response to endoplasmic reticulum stress. J. Biol. Chem. 282, 22499–22512 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Howarth, J.L. et al. Hsp40 molecules that target to the ubiquitin-proteasome system decrease inclusion formation in models of polyglutamine disease. Mol. Ther. 15, 1100–1105 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio rerio) (University of Oregon Press, 1995).

  56. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Hyatt, G.A., Schmitt, E.A., Fadool, J.M. & Dowling, J.E. Retinoic acid alters photoreceptor development in vivo. Proc. Natl. Acad. Sci. USA 93, 13298–13303 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful for funding from the UK Medical Research Council (COEN grant MR/J006904/1 to D.C.R. and C.J.O.'K.), the Wellcome Trust (Principal Fellowship 095317/Z/11/Z, to D.C.R., and strategic award 100140), the National Institute of Health Research Biomedical Research Unit in Dementia at Addenbrooke's Hospital, the TAMAHUD project (European Community FP6 grant no. 03472 under the Thematic Call LSH-2005-2.1.3-8 “Early markers and new targets for neurodegenerative diseases”) and the NEUROMICS project (European Community Seventh Framework Programme under grant agreement no. 2012-305121). We thank J.L. Marsh, N. Perrimon and the Vienna Drosophila RNAi Center for fly stocks; M. Renna and S. Luo for helpful comments; M. Lichtenberg for help with flow cytometry assays; F. Siddiqi and M. Garcia-Arencibia for help with primary cultures; W. Fecke for advice and assistance; and S. Gotta for help in high-resolution MS analysis of compounds.

Author information

Authors and Affiliations

Authors

Contributions

M.J.-S. performed most post-screen cell biology experiments. W.L. and S.I. performed the Drosophila experiments. M.H. and B.S. performed the cell-based screen. A.F., T.E.D. and C.X performed the zebrafish experiments, and A.F. supervised these. A.T., E.G.-C., V.P.S. and R.S. performed the bioinformatics analyses. F.M. performed the chaperone transcription array experiments and nonradioactive pulse-chase. E.G.-C. and F.H. participated in experimental design of the screen. F.H., G.L., D.D., L.M. and G.P. generated and validated the stable cell lines for the screen. G.M., C.C. and A.N. synthesized and analyzed the compounds. M.A. performed the selection of compound for high-throughput screening and supported the hit-to-lead optimization by in silico drug design methodologies. V.P. optimized glutaminyl cyclase enzymatic assays for compound screening. G.L.S. and N.P.C. performed in vitro ADME experiments. C.S. provided support for experiments at Siena Biotech. C.O.K. supervised Drosophila experiments. G.P. also supervised molecular biology activities at Siena Biotech. A.C. supervised primary screen and chemical biology. D.C.R. supervised cell biology, Drosophila and zebrafish experiments. D.C.R and A.C. conceived the project and coordinated work between sites with assistance from G.P., M.J.-S. and D.C.R., and A.C drafted the manuscript, which was commented on by all authors.

Corresponding authors

Correspondence to Andrea Caricasole or David C Rubinsztein.

Ethics declarations

Competing interests

A.T., E.G.-C., G.L., F.H., D.D., L.M., G.P., G.M., C.C., A.N., M.A., G.L.S., N.P.C., V.P., C.S. and A.C. were employed by Siena Biotech; M.H. and B.S. were employed by Cenix BioScience GmbH.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–18 and Supplementary Table 1 (PDF 4464 kb)

Supplementary Dataset 1

List of 257 human genes obtained in HEK293 siRNA screen and its validation in Drosophila (PDF 240 kb)

Supplementary Dataset 2

List of RNAi Drosophila lines that rescued Q48-eyedegeneration and their effect on GFP levels (PDF 81 kb)

Supplementary Dataset 3

Complete results from heat shock protein PCR array (PDF 116 kb)

Supplementary Note 1

Details for primary high-throughput siRNA screen development and analysis (PDF 72 kb)

Supplementary Note 2

Detailed synthesis and characterization of QPCT inhibitors (PDF 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez-Sanchez, M., Lam, W., Hannus, M. et al. siRNA screen identifies QPCT as a druggable target for Huntington's disease. Nat Chem Biol 11, 347–354 (2015). https://doi.org/10.1038/nchembio.1790

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1790

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research