Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Toward spinning artificial spider silk

Abstract

Spider silk is strong and extensible but still biodegradable and well tolerated when implanted, making it the ultimate biomaterial. Shortcomings that arise in replicating spider silk are due to the use of recombinant spider silk proteins (spidroins) that lack native domains, the use of denaturing conditions under purification and spinning and the fact that the understanding of how spiders control silk formation is incomplete. Recent progress has unraveled the molecular mechanisms of the spidroin N- and C-terminal nonrepetitive domains (NTs and CTs) and revealed the pH and ion gradients in spiders' silk glands, clarifying how spidroin solubility is maintained and how silk is formed in a fraction of a second. Protons and CO2, generated by carbonic anhydrase, affect the stability and structures of the NT and CT in different ways. These insights should allow the design of conditions and devices for the spinning of recombinant spidroins into native-like silk.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spider silks and spidroins.
Figure 2: Overview of the natural spinning process and role of the terminal domains.
Figure 3: Schematic representation of charge interactions, protonation events and structural rearrangements that accompany NT monomer-to-dimer conversion and stabilization.
Figure 4: A photograph of an artificial spider silk fiber.
Figure 5: A schematic biomimetic spinning device.

References

  1. Kovoor, J. in Ecophysiology of Spiders (ed. Nentwig, W.) 160–186 (Springer-Verlag, Berlin, 1987).

  2. Gosline, J.M., Guerette, P.A., Ortlepp, C.S. & Savage, K.N. The mechanical design of spider silks: from fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  PubMed  Google Scholar 

  3. Allmeling, C. et al. Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif. 41, 408–420 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radtke, C. et al. Spider silk constructs enhance axonal regeneration and remyelination in long nerve defects in sheep. PLoS ONE 6, e16990 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xia, X.X. et al. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proc. Natl. Acad. Sci. USA 107, 14059–14063 (2010).This is the first report on recombinant production of native-sized spidroin.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wong Po Foo, C. et al. Novel nanocomposites from spider silk-silica fusion (chimeric) proteins. Proc. Natl. Acad. Sci. USA 103, 9428–9433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Teulé, F. et al. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4, 341–355 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Andersson, M. et al. Carbonic anhydrase generates CO2 and H+ that drive spider silk formation via opposite effects on the terminal domains. PLoS Biol. 12, e1001921 (2014).This paper characterizes pH regulation of spider silk formation at the molecular level.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersson, M., Holm, L., Ridderstrale, Y., Johansson, J. & Rising, A. Morphology and composition of the spider major ampullate gland and dragline silk. Biomacromolecules 14, 2945–2952 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Askarieh, G. et al. Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature 465, 236–238 (2010).This paper presents the first high-resolution structure of the NT.

    Article  CAS  PubMed  Google Scholar 

  12. Hagn, F. et al. A conserved spider silk domain acts as a molecular switch that controls fibre assembly. Nature 465, 239–242 (2010).This paper present the first high-resolution structure of the CT.

    Article  CAS  PubMed  Google Scholar 

  13. Kronqvist, N. et al. Sequential pH-driven dimerization and stabilization of the N-terminal domain enables rapid spider silk formation. Nat. Commun. 5, 3254 (2014).This paper presents the molecular mechanism of NT pH-sensitive dimerization.

    Article  CAS  PubMed  Google Scholar 

  14. Ries, J., Schwarze, S., Johnson, C.M. & Neuweiler, H. Microsecond folding and domain motions of a spider silk protein structural switch. J. Am. Chem. Soc. 136, 17136–17144 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Schwarze, S., Zwettler, F.U., Johnson, C.M. & Neuweiler, H. The N-terminal domains of spider silk proteins assemble ultrafast and protected from charge screening. Nat. Commun. 4, 2815 (2013).This paper presents the molecular mechanism of ultra-fast NT association.

    Article  CAS  PubMed  Google Scholar 

  16. Gaines, W.A., Sehorn, M.G. & Marcotte, W.R. Jr. Spidroin N-terminal domain promotes a pH-dependent association of silk proteins during self-assembly. J. Biol. Chem. 285, 40745–40753 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Candelas, G.C. & Cintron, J. A spider fibron and its synthesis. J. Exp. Zool. 216, 1–6 (1981).

    Article  CAS  Google Scholar 

  18. Rising, A. et al. Major ampullate spidroins from Euprosthenops australis: multiplicity at protein, mRNA and gene levels. Insect Mol. Biol. 16, 551–561 (2007).

    CAS  PubMed  Google Scholar 

  19. Garb, J.E. & Hayashi, C.Y. Modular evolution of egg case silk genes across orb-weaving spider superfamilies. Proc. Natl. Acad. Sci. USA 102, 11379–11384 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lane, A.K., Hayashi, C.Y., Whitworth, G.B. & Ayoub, N.A. Complex gene expression in the dragline silk producing glands of the Western black widow (Latrodectus hesperus). BMC Genomics 14, 846 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sanggaard, K.W. et al. Spider genomes provide insight into composition and evolution of venom and silk. Nat. Commun. 5, 3765 (2014).This paper presents the first characterized spider genome.

    Article  CAS  PubMed  Google Scholar 

  22. Clarke, T.H. et al. Multi-tissue transcriptomics of the black widow spider reveals expansions, co-options, and functional processes of the silk gland gene toolkit. BMC Genomics 15, 365 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rising, A., Hjalm, G., Engstrom, W. & Johansson, J. N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules 7, 3120–3124 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi, C.Y., Shipley, N.H. & Lewis, R.V. Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int. J. Biol. Macromol. 24, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Vollrath, F. & Knight, D.P. Structure and function of the silk production pathway in the spider Nephila edulis. Int. J. Biol. Macromol. 24, 243–249 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Ayoub, N.A., Garb, J.E., Tinghitella, R.M., Collin, M.A. & Hayashi, C.Y. Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE 2, e514 (2007).This paper presents the first sequence of full-length spidroin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinman, M.B. & Lewis, R.V. Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J. Biol. Chem. 267, 19320–19324 (1992).

    CAS  PubMed  Google Scholar 

  28. Mita, K., Ichimura, S., Zama, M. & James, T.C. Specific codon usage pattern and its implications on the secondary structure of silk fibroin mRNA. J. Mol. Biol. 203, 917–925 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Candelas, G.C., Arroyo, G., Carrasco, C. & Dompenciel, R. Spider silkglands contain a tissue-specific alanine tRNA that accumulates in vitro in response to the stimulus for silk protein synthesis. Dev. Biol. 140, 215–220 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, X., Knight, D.P. & Vollrath, F. Rheological characterization of Nephila spidroin solution. Biomacromolecules 3, 644–648 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Hijirida, D.H. et al. 13C NMR of Nephila clavipes major ampullate silk gland. Biophys. J. 71, 3442–3447 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jin, H.J. & Kaplan, D.L. Mechanism of silk processing in insects and spiders. Nature 424, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Vollrath, F. & Knight, D.P. Liquid crystalline spinning of spider silk. Nature 410, 541–548 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Hronska, M., van Beek, J.D., Williamson, P.T., Vollrath, F. & Meier, B.H. NMR characterization of native liquid spider dragline silk from Nephila edulis. Biomacromolecules 5, 834–839 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Lefèvre, T. et al. In situ conformation of spider silk proteins in the intact major ampullate gland and in solution. Biomacromolecules 8, 2342–2344 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Simmons, A.H., Michal, C.A. & Jelinski, L.W. Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science 271, 84–87 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. van Beek, J.D., Hess, S., Vollrath, F. & Meier, B.H. The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc. Natl. Acad. Sci. USA 99, 10266–10271 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Holland, G.P., Creager, M.S., Jenkins, J.E., Lewis, R.V. & Yarger, J.L. Determining secondary structure in spider dragline silk by carbon-carbon correlation solid-state NMR spectroscopy. J. Am. Chem. Soc. 130, 9871–9877 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Kümmerlen, J., vanBeek, J.D., Vollrath, F. & Meier, B.H. Local structure in spider dragline silk investigated by two-dimensional spin-diffusion nuclear magnetic resonance. Macromolecules 29, 2920–2928 (1996).

    Article  Google Scholar 

  40. Holland, G.P., Jenkins, J.E., Creager, M.S., Lewis, R.V. & Yarger, J.L. Quantifying the fraction of glycine and alanine in β-sheet and helical conformations in spider dragline silk using solid-state NMR. Chem. Commun. (Camb.) 5568–5570 (2008).

  41. Jenkins, J.E. et al. Solid-state NMR evidence for elastin-like β-turn structure in spider dragline silk. Chem. Commun. (Camb.) 46, 6714–6716 (2010).

    Article  CAS  Google Scholar 

  42. Lindskog, S. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther. 74, 1–20 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Waisbren, S.J., Geibel, J.P., Modlin, I.M. & Boron, W.F. Unusual permeability properties of gastric gland cells. Nature 368, 332–335 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Cohen, A.C. Hemolymph chemistry of two species of araneid spiders. Comp. Biochem. Physiol. 66A, 715–717 (1980).

    Article  CAS  Google Scholar 

  45. Knight, D.P. & Vollrath, F. Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88, 179–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Garb, J.E., Ayoub, N.A. & Hayashi, C.Y. Untangling spider silk evolution with spidroin terminal domains. BMC Evol. Biol. 10, 243 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gao, Z. et al. Structural characterization of minor ampullate spidroin domains and their distinct roles in fibroin solubility and fiber formation. PLoS ONE 8, e56142 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Makin, O.S., Atkins, E., Sikorski, P., Johansson, J. & Serpell, L.C. Molecular basis for amyloid fibril formation and stability. Proc. Natl. Acad. Sci. USA 102, 315–320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nelson, R. et al. Structure of the cross-β spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Westermark, P. Aspects on human amyloid forms and their fibril polypeptides. FEBS J. 272, 5942–5949 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Jarrett, J.T. & Lansbury, P.T. Jr. Amyloid fibril formation requires a chemically discriminating nucleation event: studies of an amyloidogenic sequence from the bacterial protein OsmB. Biochemistry 31, 12345–12352 (1992).

    Article  CAS  PubMed  Google Scholar 

  52. Landreh, M. et al. A pH-dependent dimer lock in spider silk protein. J. Mol. Biol. 404, 328–336 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Jaudzems, K. et al. pH-Dependent dimerization of spider silk N-terminal domain requires relocation of a wedged tryptophan side chain. J. Mol. Biol. 422, 477–487 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Hagn, F., Thamm, C., Scheibel, T. & Kessler, H. pH-dependent dimerization and salt-dependent stabilization of the N-terminal domain of spider dragline silk—implications for fiber formation. Angew. Chem. Int. Edn Engl. 50, 310–313 (2011).

    Article  CAS  Google Scholar 

  55. Chen, G. et al. Full-length minor ampullate spidroin gene sequence. PLoS ONE 7, e52293 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin, Z., Deng, Q., Liu, X.Y. & Yang, D. Engineered large spider eggcase silk protein for strong artificial fibers. Adv. Mater. 25, 1216–1220 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Stephens, J.S. et al. Effects of electrospinning and solution casting protocols on the secondary structure of a genetically engineered dragline spider silk analogue investigated via Fourier transform Raman spectroscopy. Biomacromolecules 6, 1405–1413 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Lang, G., Jokisch, S. & Scheibel, T. Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J. Vis. Exp. doi:10.3791/50492 (8 May 2013).

  59. Stark, M. et al. Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules 8, 1695–1701 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Xu, L., Rainey, J.K., Meng, Q. & Liu, X.Q. Recombinant minimalist spider wrapping silk proteins capable of native-like fiber formation. PLoS ONE 7, e50227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Huemmerich, D. et al. Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry 43, 13604–13612 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Kallberg, Y., Gustafsson, M., Persson, B., Thyberg, J. & Johansson, J. Prediction of amyloid fibril-forming proteins. J. Biol. Chem. 276, 12945–12950 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. Hessa, T. et al. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Lefèvre, T., Paquet-Mercier, F., Rioux-Dube, J.F. & Pezolet, M. Review structure of silk by Raman spectromicroscopy: from the spinning glands to the fibers. Biopolymers 97, 322–336 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Wang, S., Huang, W. & Yang, D. NMR structure note: repetitive domain of aciniform spidroin 1 from Nephila antipodiana. J. Biomol. NMR 54, 415–420 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Blackledge, T.A. & Hayashi, C.Y. Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J. Exp. Biol. 209, 2452–2461 (2006).

    Article  PubMed  Google Scholar 

  67. Denny, M. The physical properties of spider's silk and their role in the design of orb-webs. J. Exp. Biol. 65, 483–506 (1976).

    Google Scholar 

  68. Köhler, T. & Vollrath, F. Thread biomechanics in the two orb weaving spiders Araneus diadematus (Araneae, Araneidae) and Uloborus walckenaerius (Araneae, Uloboridae). J. Exp. Zool. 271, 1–17 (1995).

    Article  Google Scholar 

  69. Stauffer, S.L., Coguill, S.L. & Lewis, R.V. Comparison of physical properties of 3 silks from Nephila clavipes and Araneus gemmoides. J. Arachnol. 22, 5–11 (1994).

    Google Scholar 

Download references

Acknowledgements

We are grateful to S. Knight for valuable discussions and helpful comments on this manuscript. The Swedish Research Council supported work in the authors' laboratory.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anna Rising or Jan Johansson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Summary of techniques and proteins used to make artificial spider silk fibers (PDF 200 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rising, A., Johansson, J. Toward spinning artificial spider silk. Nat Chem Biol 11, 309–315 (2015). https://doi.org/10.1038/nchembio.1789

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1789

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing