Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation

Abstract

Sepsis, a hyperinflammatory response that can result in multiple organ dysfunctions, is a leading cause of mortality from infection. Here, we show that orphan nuclear receptor Nur77 (also known as TR3) can enhance resistance to lipopolysaccharide (LPS)-induced sepsis in mice by inhibiting NF-κB activity and suppressing aberrant cytokine production. Nur77 directly associates with p65 to block its binding to the κB element. However, this function of Nur77 is countered by the LPS-activated p38α phosphorylation of Nur77. Dampening the interaction between Nur77 and p38α would favor Nur77 suppression of the hyperinflammatory response. A compound, n-pentyl 2-[3,5-dihydroxy-2-(1-nonanoyl) phenyl]acetate, screened from a Nur77-biased library, blocked the Nur77-p38α interaction by targeting the ligand-binding domain of Nur77 and restored the suppression of the hyperinflammatory response through Nur77 inhibition of NF-κB. This study associates the nuclear receptor with immune homeostasis and implicates a new therapeutic strategy to treat hyperinflammatory responses by targeting a p38α substrate to modulate p38α-regulated functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nur77-deficient mice are with elevated sensitivity to LPS-induced sepsis.
Figure 2: Nur77 inhibits NF-κB activation via impairing p65 binding to DNA.
Figure 3: Phosphorylation by p38α abolishes Nur77 function.
Figure 4: PDNPA suppresses NF-κB activation by disrupting the interaction between p38α and Nur77.
Figure 5: Critical residues for PDNPA binding and p38α interaction.
Figure 6: PDNPA treatment for LPS- and CLP- induced sepsis.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Lever, A. & Mackenzie, I. Sepsis: definition, epidemiology, and diagnosis. Br. Med. J. 335, 879–883 (2007).

    Article  CAS  Google Scholar 

  2. Hartman, M.E., Linde-Zwirble, W.T., Angus, D.C. & Watson, R.S. Trends in the epidemiology of pediatric severe sepsis. Pediatr. Crit. Care Med. 14, 686–693 (2013).

    Article  PubMed  Google Scholar 

  3. Ulloa, L. & Tracey, K.J. The “cytokine profile”: a code for sepsis. Trends Mol. Med. 11, 56–63 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Han, J. & Ulevitch, R.J. Limiting inflammatory responses during activation of innate immunity. Nat. Immunol. 6, 1198–1205 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hayden, M.S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Beyaert, R. et al. The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J. 15, 1914–1923 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vanden Berghe, W. et al. p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-κB p65 transactivation mediated by tumor necrosis factor. J. Biol. Chem. 273, 3285–3290 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Ono, K. & Han, J. The p38 signal transduction pathway: activation and function. Cell. Signal. 12, 1–13 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Saha, R.N., Jana, M. & Pahan, K. MAPK p38 regulates transcriptional activity of NF-κB in primary human astrocytes via acetylation of p65. J. Immunol. 179, 7101–7109 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Hazel, T.G., Nathans, D. & Lau, L.F. A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc. Natl. Acad. Sci. USA 85, 8444–8448 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pei, L., Castrillo, A., Chen, M., Hoffmann, A. & Tontonoz, P. Induction of NR4A orphan nuclear receptor expression in macrophages in response to inflammatory stimuli. J. Biol. Chem. 280, 29256–29262 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Bonta, P.I. et al. Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arterioscler. Thromb. Vasc. Biol. 26, 2288–2294 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. You, B., Jiang, Y.Y., Chen, S., Yan, G. & Sun, J. The orphan nuclear receptor Nur77 suppresses endothelial cell activation through induction of IκBα expression. Circ. Res. 104, 742–749 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Hamers, A.A. et al. Bone marrow–specific deficiency of nuclear receptor Nur77 enhances atherosclerosis. Circ. Res. 110, 428–438 (2012); erratum 110, e46 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Hanna, R.N. et al. NR4A1 (Nur77) deletion polarizes macrophages toward an inflammatory phenotype and increases atherosclerosis. Circ. Res. 110, 416–427 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Doi, K., Leelahavanichkul, A., Yuen, P.S. & Star, R.A. Animal models of sepsis and sepsis-induced kidney injury. J. Clin. Invest. 119, 2868–2878 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Litvak, V. et al. Function of C/EBPΔ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat. Immunol. 10, 437–443 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tian, B., Nowak, D.E., Jamaluddin, M., Wang, S. & Brasier, A.R. Identification of direct genomic targets downstream of the nuclear factor-κB transcription factor mediating tumor necrosis factor signaling. J. Biol. Chem. 280, 17435–17448 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Németh, Z.H. et al. cDNA microarray analysis reveals a nuclear factor-κB–independent regulation of macrophage function by adenosine. J. Pharmacol. Exp. Ther. 306, 1042–1049 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Wang, H. et al. NF-κB regulation of YY1 inhibits skeletal myogenesis through transcriptional silencing of myofibrillar genes. Mol. Cell. Biol. 27, 4374–4387 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alkalay, I. et al. Stimulation-dependent IκBα phosphorylation marks the NF-κB inhibitor for degradation via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 92, 10599–10603 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hong, C.Y. et al. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor α. Mol. Cell. Biol. 24, 2593–2604 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhan, Y.Y. et al. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat. Chem. Biol. 8, 897–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Kang, Y.J. et al. Macrophage deletion of p38α partially impairs lipopolysaccharide-induced cellular activation. J. Immunol. 180, 5075–5082 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Malek, S., Huxford, T. & Ghosh, G. IκBα functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-κB. J. Biol. Chem. 273, 25427–25435 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Sun, S.C., Ganchi, P.A., Ballard, D.W. & Greene, W.C. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259, 1912–1915 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Arenzana-Seisdedos, F. et al. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110, 369–378 (1997).

    CAS  PubMed  Google Scholar 

  30. Han, J., Lee, J.D., Bibbs, L. & Ulevitch, R.J.A. MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265, 808–811 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Trempolec, N., Dave-Coll, N. & Nebreda, A.R. SnapShot: p38 MAPK substrates. Cell 152, 924–924 e1 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, B. et al. Regulation of the orphan receptor TR3 nuclear functions by c-Jun N terminal kinase phosphorylation. Endocrinology 148, 34–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, A., Rud, J., Olson, C.M. Jr., Anguita, J. & Osborne, B.A. Phosphorylation of Nur77 by the MEK-ERK-RSK cascade induces mitochondrial translocation and apoptosis in T cells. J. Immunol. 183, 3268–3277 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, H.Z. et al. The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signalling. Gut 61, 714–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Liu, J.J. et al. A unique pharmacophore for activation of the nuclear orphan receptor Nur77 in vivo and in vitro. Cancer Res. 70, 3628–3637 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, W.J. et al. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat. Chem. Biol. 10, 133–140 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Dogné, J.M., Supuran, C.T. & Pratico, D. Adverse cardiovascular effects of the coxibs. J. Med. Chem. 48, 2251–2257 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Mukherjee, D., Nissen, S.E. & Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. J. Am. Med. Assoc. 286, 954–959 (2001).

    Article  CAS  Google Scholar 

  39. Dinarello, C.A. Anti-inflammatory agents: present and future. Cell 140, 935–950 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peifer, C., Wagner, G. & Laufer, S. New approaches to the treatment of inflammatory disorders small molecule inhibitors of p38 MAP kinase. Curr. Top. Med. Chem. 6, 113–149 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Hynes, J. Jr. & Leftheri, K. Small molecule p38 inhibitors: novel structural features and advances from 2002–2005. Curr. Top. Med. Chem. 5, 967–985 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Pettus, L.H. & Wurz, R.P. Small molecule p38 MAP kinase inhibitors for the treatment of inflammatory diseases: novel structures and developments during 2006–2008. Curr. Top. Med. Chem. 8, 1452–1467 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Genovese, M.C. Inhibition of p38: has the fat lady sung? Arthritis Rheum. 60, 317–320 (2009).

    Article  PubMed  Google Scholar 

  44. Zhang, J., Shen, B. & Lin, A. Novel strategies for inhibition of the p38 MAPK pathway. Trends Pharmacol. Sci. 28, 286–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Goldstein, D.M. & Gabriel, T. Pathway to the clinic: inhibition of P38 MAP kinase. A review of ten chemotypes selected for development. Curr. Top. Med. Chem. 5, 1017–1029 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Davidson, W. et al. Discovery and characterization of a substrate selective p38αinhibitor. Biochemistry 43, 11658–11671 (2004).

    CAS  PubMed  Google Scholar 

  47. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  51. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  53. Cogan, U., Kopelman, M., Mokady, S. & Shinitzky, M. Binding affinities of retinol and related compounds to retinol binding proteins. Eur. J. Biochem. 65, 71–78 (1976).

    Article  CAS  PubMed  Google Scholar 

  54. Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Li, L., Chen, R. & Weng, Z. RDOCK: refinement of rigid-body protein docking predictions. Proteins 53, 693–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Brooks, B.R. et al. Charmm—a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  57. Banks, J.L. et al. Integrated modeling program, applied chemical theory (IMPACT). J. Comput. Chem. 26, 1752–1780 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shivakumar, D. et al. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J. Chem. Theory Comput. 6, 1509–1519 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Fund of China, the '973' Project of the Ministry of Science and Technology (91413113, 2014CB910602, 31370724, 31221065) and the Program of Introducing Talents of Discipline to Universities (B12001). The crystallographic data collection at Beamline BL17U1 at Shanghai Synchrotron Radiation Facility is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

The Wu laboratory (L.L., Y.L., H.C., J. He, Y.X., Y.C. and W.W.) was responsible for the experiments on molecular cellular biology and detection in mice. The Lin laboratory (F.L., X.T., A.L., Q.Z.) was responsible for the structure determination and analysis. The Han laboratory (J.W.) provided p38αfl/fl and LtrLysCre-p38αΔ/Δ mice. The Huang laboratory (H.Z.) provided the compounds. J. Han was involved in the discussion of the manuscript. Q.W. and T.L. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Tianwei Lin or Qiao Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Tables 1–4. (PDF 17762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Liu, Y., Chen, Hz. et al. Impeding the interaction between Nur77 and p38 reduces LPS-induced inflammation. Nat Chem Biol 11, 339–346 (2015). https://doi.org/10.1038/nchembio.1788

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1788

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing