Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Chromatin-level regulation of biosynthetic gene clusters

A Corrigendum to this article was published on 01 September 2009

This article has been updated

Abstract

Loss-of-function Aspergillus nidulans CclA, a Bre2 ortholog involved in histone H3 lysine 4 methylation, activated the expression of cryptic secondary metabolite clusters in A. nidulans. One new cluster generated monodictyphenone, emodin and emodin derivatives, whereas a second encoded two anti-osteoporosis polyketides, F9775A and F9775B. Modification of the chromatin landscape in fungal secondary metabolite clusters allows for a simple technological means to express silent fungal secondary metabolite gene clusters.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of monodictyphenone and its gene cluster.
Figure 2: Identification of F9775 and its gene cluster.

Similar content being viewed by others

Change history

  • 18 August 2009

    In the version of this article initially published, the fourth author's last name is misspelled. The author's name should read "Yazmid Reyes-Dominguez." The error has been corrected in the HTML and PDF versions of the article.

References

  1. Nierman, W.C et al. Nature 438, 1151–1156 (2005).

    Article  CAS  Google Scholar 

  2. Rohlfs, M., Albert, M., Keller, N.P. & Kempken, F. Biol. Lett. 3, 523–525 (2007).

    Article  Google Scholar 

  3. Keller, N.P., Turner, G. & Bennett, J.W Nat. Rev. Microbiol. 3, 937–947 (2005).

    Article  CAS  Google Scholar 

  4. Bergmann, S. et al. Nat. Chem. Biol. 3, 213–217 (2007).

    Article  CAS  Google Scholar 

  5. Bok, J.W. & Keller, N.P. Eukaryot. Cell 3, 527–535 (2004).

    Article  CAS  Google Scholar 

  6. Bayram, O. et al. Science 320, 1504–1506 (2008).

    Article  CAS  Google Scholar 

  7. Perrin, R.M. et al. PLoS Pathog. 3, e50 (2007).

    Article  Google Scholar 

  8. Bok, J.W. et al. Chem. Biol. 13, 31–37 (2006).

    Article  CAS  Google Scholar 

  9. Shwab, E.K. et al. Eukaryot. Cell 6, 1656–1664 (2007).

    Article  CAS  Google Scholar 

  10. Roze, L.V., Arthur, A.E., Hong, S.Y., Chanda, A. & Linz, J.E. Mol. Microbiol. 66, 713–726 (2007).

    Article  CAS  Google Scholar 

  11. Mueller, J.E., Canze, M. & Bryk, M. Genetics 173, 557–567 (2006).

    Article  CAS  Google Scholar 

  12. Sims, R.J. III & Rienberg, D. Genes Dev. 20, 2779–2786 (2006).

    Article  CAS  Google Scholar 

  13. Wood, A., Schneider, J. & Shilatifard, A. Biochem. Cell Biol. 83, 460–467 (2005).

    Article  CAS  Google Scholar 

  14. Ottaviani, A., Gilson, E. & Magdinier, F. Biochimie 90, 93–107 (2008).

    Article  CAS  Google Scholar 

  15. Schneider, J. et al. Mol. Cell 19, 849–856 (2005).

    Article  CAS  Google Scholar 

  16. Brown, D.W., Adams, T.H. & Keller, N.P. Proc. Natl. Acad. Sci. USA 93, 14873–14877 (1996).

    Article  CAS  Google Scholar 

  17. Krick, A. et al. J. Nat. Prod. 70, 353–360 (2007).

    Article  CAS  Google Scholar 

  18. Lu, P. et al. Mol. Genet. Genomics 273, 207–216 (2005).

    Article  CAS  Google Scholar 

  19. Couch, R.D. & Gaucher, G.M. J. Biotechnol. 108, 171–178 (2004).

    Article  CAS  Google Scholar 

  20. Wu, Y. et al. Life Sci. 81, 1332–1338 (2007).

    Article  CAS  Google Scholar 

  21. Fernandes, M., Keller, N.P. & Adams, T.H. Mol. Microbiol. 28, 1355–1365 (1998).

    Article  CAS  Google Scholar 

  22. Sato, S., Morishita, T., Hosoya, T. & Ishikawa, Y. Novel pentacyclic compounds, F-9775A and F-9775B, their manufacture with Paecilomyces carneus, and their use for treatment of osteoporosis. Japanese patent JP11001480 (1999).

  23. Dean, R.A. et al. Nature 434, 980–986 (2005).

    Article  CAS  Google Scholar 

  24. Cuomo, C.A. et al. Science 317, 1400–1402 (2007).

    Article  CAS  Google Scholar 

  25. Pelaez, F. Biological activities of fungal metabolites. In Handbook of Industrial Mycology (ed., Z. An) 49–92 (Marcel Dekker, New York, 2005).

    Google Scholar 

Download references

Acknowledgements

This research was funded in part by the US National Science Foundation grant MCB-0236393 to N.P.K., National Institutes of Health grant GM084077 to N.P.K., B.R.O. and C.C.C.W., and GM031837 to B.R.O. Work in Vienna was supported by grant P19731-B11 from the Austrian Science Fund (FWF) to J.S.

Author information

Authors and Affiliations

Authors

Contributions

J.W.B. contributed to design and execution of experiments and to writing the manuscript. Y.-M.C., J.F.S. and H.-C.L. were involved in metabolite analysis of Aspergillus strains by LC-MS and in the isolation and structural determination of monodictyphenone, emodins and F9755A/B by one- and two-dimensional NMR. Y.R.-D. conducted the ChIP analysis. K.W. was involved in obtaining LC/MS data. E.S. and A.D.D. were involved in generating Aspergillus mutant strains. B.R.O., N.P.K., J.S. and C.C.C.W. contributed to design and writing.

Corresponding authors

Correspondence to Clay C C Wang or Nancy P Keller.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–5 and Supplementary Methods (PDF 544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bok, J., Chiang, YM., Szewczyk, E. et al. Chromatin-level regulation of biosynthetic gene clusters. Nat Chem Biol 5, 462–464 (2009). https://doi.org/10.1038/nchembio.177

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.177

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing