Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Regulation of the oncoprotein Smoothened by small molecules

Abstract

The Hedgehog pathway is critical for animal development and has been implicated in multiple human malignancies. Despite great interest in targeting the pathway pharmacologically, many of the principles underlying the signal transduction cascade remain poorly understood. Hedgehog ligands are recognized by a unique receptor system that features the transporter-like protein Patched and the G protein–coupled receptor (GPCR)-like Smoothened (SMO). The biochemical interaction between these transmembrane proteins is the subject of intensive efforts. Recent structural and functional studies have provided great insight into the small-molecule regulation of SMO through identification of two distinct ligand-binding sites. In this Perspective, we review these recent findings and relate them to potential mechanisms for the endogenous regulation of SMO.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the vertebrate Hedgehog signaling pathway.
Figure 2: Small-molecule interactions with the SMO heptahelical bundle.
Figure 3: SMO mutations found in cancer.
Figure 4: Comparison between FZD8 CRD and Smo CRD structures.
Figure 5: Proposed models for the endogenous regulation of vertebrate SMO.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Briscoe, J. & Therond, P.P. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat. Rev. Mol. Cell Biol. 14, 416–429 (2013).

    PubMed  Google Scholar 

  2. Amakye, D., Jagani, Z. & Dorsch, M. Unraveling the therapeutic potential of the Hedgehog pathway in cancer. Nat. Med. 19, 1410–1422 (2013).

    CAS  PubMed  Google Scholar 

  3. Stone, D.M. et al. The tumour-suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384, 129–134 (1996).

    CAS  PubMed  Google Scholar 

  4. Izzi, L. et al. Boc and Gas1 each form distinct Shh receptor complexes with Ptch1 and are required for Shh-mediated cell proliferation. Dev. Cell 20, 788–801 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Taipale, J., Cooper, M.K., Maiti, T. & Beachy, P.A. Patched acts catalytically to suppress the activity of Smoothened. Nature 418, 892–897 (2002).

    CAS  PubMed  Google Scholar 

  6. Niewiadomski, P. et al. Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. Cell Rep. 6, 168–181 (2014).

    CAS  PubMed  Google Scholar 

  7. Goetz, S.C. & Anderson, K.V. The primary cilium: a signalling centre during vertebrate development. Nat. Rev. Genet. 11, 331–344 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Rohatgi, R., Milenkovic, L. & Scott, M.P. Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372–376 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Corbit, K.C. et al. Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018–1021 (2005).

    CAS  PubMed  Google Scholar 

  10. Milenkovic, L., Scott, M.P. & Rohatgi, R. Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J. Cell Biol. 187, 365–374 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Seo, S. et al. A novel protein LZTFL1 regulates ciliary trafficking of the BBSome and Smoothened. PLoS Genet. 7, e1002358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kovacs, J.J. et al. b-Arrestin–mediated localization of smoothened to the primary cilium. Science 320, 1777–1781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen, Y. et al. Sonic Hedgehog dependent phosphorylation by CK1a and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol. 9, e1001083 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ocbina, P.J. & Anderson, K.V. Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev. Dyn. 237, 2030–2038 (2008).

    PubMed  PubMed Central  Google Scholar 

  15. Keady, B.T. et al. IFT25 links the signal-dependent movement of Hedgehog components to intraflagellar transport. Dev. Cell 22, 940–951 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Myers, B.R. et al. Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Dev. Cell 26, 346–357 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fan, J., Liu, Y. & Jia, J. Hh-induced Smoothened conformational switch is mediated by differential phosphorylation at its C-terminal tail in a dose- and position-dependent manner. Dev. Biol. 366, 172–184 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, S., Ma, G., Wang, B. & Jiang, J. Hedgehog induces formation of PKA-Smoothened complexes to promote Smoothened phosphorylation and pathway activation. Sci. Signal. 7, ra62 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Zhao, Y., Tong, C. & Jiang, J. Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450, 252–258 (2007).

    CAS  PubMed  Google Scholar 

  20. Riobo, N.A., Saucy, B., Dilizio, C. & Manning, D.R. Activation of heterotrimeric G proteins by Smoothened. Proc. Natl. Acad. Sci. USA 103, 12607–12612 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mukhopadhyay, S. & Rohatgi, R. G-protein-coupled receptors, Hedgehog signaling and primary cilia. Semin. Cell Dev. Biol. 33, 63–72 (2014).

    CAS  Google Scholar 

  22. Murone, M., Rosenthal, A. & de Sauvage, F.J. Sonic hedgehog signaling by the patched–smoothened receptor complex. Curr. Biol. 9, 76–84 (1999).

    CAS  PubMed  Google Scholar 

  23. Concordet, J.P. et al. Spatial regulation of a zebrafish patched homologue reflects the roles of sonic hedgehog and protein kinase A in neural tube and somite patterning. Development 122, 2835–2846 (1996).

    CAS  PubMed  Google Scholar 

  24. Epstein, D.J., Marti, E., Scott, M.P. & McMahon, A.P. Antagonizing cAMP-dependent protein kinase A in the dorsal CNS activates a conserved Sonic hedgehog signaling pathway. Development 122, 2885–2894 (1996).

    CAS  PubMed  Google Scholar 

  25. Mukhopadhyay, S. et al. The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210–223 (2013).

    CAS  PubMed  Google Scholar 

  26. Meloni, A.R. et al. Smoothened signal transduction is promoted by G protein-coupled receptor kinase 2. Mol. Cell. Biol. 26, 7550–7560 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nakano, Y. et al. Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mech. Dev. 121, 507–518 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. He, M. et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat. Cell Biol. 16, 663–672 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chinchilla, P., Xiao, L., Kazanietz, M.G. & Riobo, N.A. Hedgehog proteins activate pro-angiogenic responses in endothelial cells through non-canonical signaling pathways. Cell Cycle 9, 570–579 (2010).

    CAS  PubMed  Google Scholar 

  30. Bijlsma, M.F., Damhofer, H. & Roelink, H. Hedgehog-stimulated chemotaxis is mediated by smoothened located outside the primary cilium. Sci. Signal. 5, ra60 (2012).

    PubMed  PubMed Central  Google Scholar 

  31. Teperino, R. et al. Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell 151, 414–426 (2012).

    CAS  PubMed  Google Scholar 

  32. de la Roche, M. et al. Hedgehog signaling controls T cell killing at the immunological synapse. Science 342, 1247–1250 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Polizio, A.H. et al. Heterotrimeric Gi proteins link Hedgehog signaling to activation of Rho small GTPases to promote fibroblast migration. J. Biol. Chem. 286, 19589–19596 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Keeler, R.F. & Binns, W. Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related compounds from other sources. Teratology 1, 5–10 (1968).

    CAS  PubMed  Google Scholar 

  35. Chen, J.K., Taipale, J., Cooper, M.K. & Beachy, P.A. Inhibition of Hedgehog signaling by direct binding of cyclopamine to Smoothened. Genes Dev. 16, 2743–2748 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dijkgraaf, G.J. et al. Small molecule inhibition of GDC-0449 refractory smoothened mutants and downstream mechanisms of drug resistance. Cancer Res. 71, 435–444 (2011).

    CAS  PubMed  Google Scholar 

  37. Chen, J.K., Taipale, J., Young, K.E., Maiti, T. & Beachy, P.A. Small molecule modulation of Smoothened activity. Proc. Natl. Acad. Sci. USA 99, 14071–14076 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cooper, M.K. et al. A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nat. Genet. 33, 508–513 (2003).

    CAS  PubMed  Google Scholar 

  39. Reifenberger, J. et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinomas. Br. J. Dermatol. 152, 43–51 (2005).

    CAS  PubMed  Google Scholar 

  40. Reifenberger, J. et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res. 58, 1798–1803 (1998).

    CAS  PubMed  Google Scholar 

  41. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    CAS  PubMed  Google Scholar 

  42. Kool, M. et al. Genome sequencing of SHH medulloblastoma predicts genotype-related response to Smoothened inhibition. Cancer Cell 25, 393–405 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Low, J.A. & de Sauvage, F.J. Clinical experience with Hedgehog pathway inhibitors. J. Clin. Oncol. 28, 5321–5326 (2010).

    CAS  PubMed  Google Scholar 

  44. Dreno, B., Basset-Seguin, N., Caro, I., Yue, H. & Schadendorf, D. Clinical benefit assessment of vismodegib therapy in patients with advanced Basal cell carcinoma. Oncologist 19, 790–796 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim, J. et al. Itraconazole, a commonly used antifungal that inhibits Hedgehog pathway activity and cancer growth. Cancer Cell 17, 388–399 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, D.J. et al. Open-label, exploratory phase II trial of oral itraconazole for the treatment of basal cell carcinoma. J. Clin. Oncol. 32, 745–751 (2014).

    CAS  PubMed  Google Scholar 

  47. Wang, C. et al. Structure of the human smoothened receptor bound to an antitumour agent. Nature 497, 338–343 (2013). First crystal structure of the transmembrane core of Smoothened. The bound antagonist highlights key residues involved in inhibition of SMO.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Weierstall, U. et al. Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography. Nat. Commun. 5, 3309 (2014).

    PubMed  Google Scholar 

  49. Wang, C. et al. Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs. Nat. Commun. 5, 4355 (2014). Structural insights into how several small-molecule modulators of SMO interact with the transmembrane core.

    CAS  PubMed  Google Scholar 

  50. Ruat, M., Hoch, L., Faure, H. & Rognan, D. Targeting of Smoothened for therapeutic gain. Trends Pharmacol. Sci. 35, 237–246 (2014).

    CAS  PubMed  Google Scholar 

  51. Rominger, C.M. et al. Evidence for allosteric interactions of antagonist binding to the smoothened receptor. J. Pharmacol. Exp. Ther. 329, 995–1005 (2009).

    CAS  PubMed  Google Scholar 

  52. Brastianos, P.K. et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 45, 285–289 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sweeney, R.T. et al. Identification of recurrent SMO and BRAF mutations in ameloblastomas. Nat. Genet. 46, 722–725 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Katritch, V., Cherezov, V. & Stevens, R.C. Structure-function of the G protein–coupled receptor superfamily. Annu. Rev. Pharmacol. Toxicol. 53, 531–556 (2013).

    CAS  PubMed  Google Scholar 

  55. Peluso, M.O. et al. Impact of the Smoothened inhibitor, IPI-926, on smoothened ciliary localization and Hedgehog pathway activity. PLoS ONE 9, e90534 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Rohatgi, R., Milenkovic, L., Corcoran, R.B. & Scott, M.P. Hedgehog signal transduction by Smoothened: pharmacologic evidence for a 2-step activation process. Proc. Natl. Acad. Sci. USA 106, 3196–3201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wilson, C.W., Chen, M.H. & Chuang, P.T. Smoothened adopts multiple active and inactive conformations capable of trafficking to the primary cilium. PLoS ONE 4, e5182 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Rudin, C.M. et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N. Engl. J. Med. 361, 1173–1178 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Chang, A.L., Atwood, S.X., Tartar, D.M. & Oro, A.E. Surgical excision after neoadjuvant therapy with vismodegib for a locally advanced basal cell carcinoma and resistant basal carcinomas in Gorlin syndrome. JAMA Dermatol. 149, 639–641 (2013).

    PubMed  PubMed Central  Google Scholar 

  60. Clark, V.E. et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339, 1077–1080 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Gether, U. et al. Structural instability of a constitutively active G protein–coupled receptor. Agonist-independent activation due to conformational flexibility. J. Biol. Chem. 272, 2587–2590 (1997).

    CAS  PubMed  Google Scholar 

  62. Nichols, A.S., Floyd, D.H., Bruinsma, S.P., Narzinski, K. & Baranski, T.J. Frizzled receptors signal through G proteins. Cell. Signal. 25, 1468–1475 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yauch, R.L. et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 326, 572–574 (2009). The first report of acquired resistance to a Smoothened inhibitor in the clinic.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Buonamici, S. et al. Interfering with resistance to smoothened antagonists by inhibition of the PI3K pathway in medulloblastoma. Sci. Transl. Med. 2, 51ra70 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Corcoran, R.B. & Scott, M.P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl. Acad. Sci. USA 103, 8408–8413 (2006). The first observation that oxysterols can modulate Hedgehog signaling through SMO.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dwyer, J.R. et al. Oxysterols are novel activators of the hedgehog signaling pathway in pluripotent mesenchymal cells. J. Biol. Chem. 282, 8959–8968 (2007).

    CAS  PubMed  Google Scholar 

  67. Nachtergaele, S. et al. Oxysterols are allosteric activators of the oncoprotein Smoothened. Nat. Chem. Biol. 8, 211–220 (2012). First report of a direct interaction of SMO with oxysterols. Development of a 20(S)-yne conjugated beads.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Cyster, J.G., Dang, E.V., Reboldi, A. & Yi, T. 25-Hydroxycholesterols in innate and adaptive immunity. Nat. Rev. Immunol. 14, 731–743 (2014).

    CAS  PubMed  Google Scholar 

  69. Corman, A., DeBerardinis, A.M. & Hadden, M.K. Structure-activity relationships for side chain oxysterol agonists of the Hedgehog signaling pathway. ACS Med. Chem. Lett. 3, 828–833 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bazan, J.F. & de Sauvage, F.J. Structural ties between cholesterol transport and morphogen signaling. Cell 138, 1055–1056 (2009).

    CAS  PubMed  Google Scholar 

  71. Janda, C.Y., Waghray, D., Levin, A.M., Thomas, C. & Garcia, K.C. Structural basis of Wnt recognition by Frizzled. Science 337, 59–64 (2012). The structure of WNT bound to the Frizzled CRD revealed a hydrophobic groove that binds the palmitoyl moiety of WNT.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Gao, X. & Hannoush, R.N. Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine. Nat. Chem. Biol. 10, 61–68 (2014).

    CAS  PubMed  Google Scholar 

  73. Nachtergaele, S. et al. Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. eLife 2, e01340 (2013). The first structure of the vertebrate Smoothened CRD revealing a hydrophobic groove that appears to serve as a ligand-binding site.

    PubMed  PubMed Central  Google Scholar 

  74. Nedelcu, D., Liu, J., Xu, Y., Jao, C. & Salic, A. Oxysterol binding to the extracellular domain of Smoothened in Hedgehog signaling. Nat. Chem. Biol. 9, 557–564 (2013). Developed a novel oxysterol-derived antagonist to study the importance of the Smoothened CRD in Hedgehog signaling.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Y. et al. Glucocorticoid compounds modify smoothened localization and hedgehog pathway activity. Chem. Biol. 19, 972–982 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Rana, R. et al. Structural insights into the role of the Smoothened cysteine-rich domain in Hedgehog signalling. Nat. Commun. 4, 2965 (2013).

    PubMed  Google Scholar 

  77. Aanstad, P. et al. The extracellular domain of Smoothened regulates ciliary localization and is required for high-level Hh signaling. Curr. Biol. 19, 1034–1039 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Infante, R.E. et al. NPC2 facilitates bidirectional transfer of cholesterol between NPC1 and lipid bilayers, a step in cholesterol egress from lysosomes. Proc. Natl. Acad. Sci. USA 105, 15287–15292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Burke, R. et al. Dispatched, a novel sterol-sensing domain protein dedicated to the release of cholesterol-modified hedgehog from signaling cells. Cell 99, 803–815 (1999).

    CAS  PubMed  Google Scholar 

  80. Hausmann, G., von Mering, C. & Basler, K. The hedgehog signaling pathway: where did it come from? PLoS Biol. 7, e1000146 (2009).

    PubMed  PubMed Central  Google Scholar 

  81. Denef, N., Neubuser, D., Perez, L. & Cohen, S.M. Hedgehog induces opposite changes in turnover and subcellular localization of patched and smoothened. Cell 102, 521–531 (2000).

    CAS  PubMed  Google Scholar 

  82. Milligan, G. Constitutive activity and inverse agonists of G protein–coupled receptors: a current perspective. Mol. Pharmacol. 64, 1271–1276 (2003).

    CAS  PubMed  Google Scholar 

  83. Adan, R.A. & Kas, M.J. Inverse agonism gains weight. Trends Pharmacol. Sci. 24, 315–321 (2003).

    CAS  PubMed  Google Scholar 

  84. Taipale, J. et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 406, 1005–1009 (2000).

    CAS  PubMed  Google Scholar 

  85. Takahashi, K., Tokita, S. & Kotani, H. Generation and characterization of highly constitutive active histamine H3 receptors. J. Pharmacol. Exp. Ther. 307, 213–218 (2003).

    CAS  PubMed  Google Scholar 

  86. Koth, C.M. et al. Molecular basis for negative regulation of the glucagon receptor. Proc. Natl. Acad. Sci. USA 109, 14393–14398 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Tao, H. et al. Small molecule antagonists in distinct binding modes inhibit drug-resistant mutant of smoothened. Chem. Biol. 18, 432–437 (2011).

    CAS  PubMed  Google Scholar 

  88. Deschaseaux, F., Sensebe, L. & Heymann, D. Mechanisms of bone repair and regeneration. Trends Mol. Med. 15, 417–429 (2009).

    CAS  PubMed  Google Scholar 

  89. Hadden, M.K. Hedgehog pathway agonism: therapeutic potential and small-molecule development. ChemMedChem 9, 27–37 (2014).

    CAS  PubMed  Google Scholar 

  90. Montgomery, S.R. et al. A novel osteogenic oxysterol compound for therapeutic development to promote bone growth: activation of hedgehog signaling and osteogenesis through smoothened binding. J. Bone Miner. Res. 29, 1872–1885 (2014).

    CAS  PubMed  Google Scholar 

  91. Yam, P.T., Langlois, S.D., Morin, S. & Charron, F. Sonic hedgehog guides axons through a noncanonical, Src-family-kinase–dependent signaling pathway. Neuron 62, 349–362 (2009).

    CAS  PubMed  Google Scholar 

  92. Frank-Kamenetsky, M. et al. Small-molecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol. 1, 10 (2002).

    PubMed  PubMed Central  Google Scholar 

  93. Robarge, K.D. et al. GDC-0449—a potent inhibitor of the hedgehog pathway. Bioorg. Med. Chem. Lett. 19, 5576–5581 (2009).

    CAS  PubMed  Google Scholar 

  94. Rodon, J. et al. A phase I, multicenter, open-label, first-in-human, dose-escalation study of the oral smoothened inhibitor Sonidegib (LDE225) in patients with advanced solid tumors. Clin. Cancer Res. 20, 1900–1909 (2014).

    CAS  PubMed  Google Scholar 

  95. Miller-Moslin, K. et al. 1-Amino-4-benzylphthalazines as orally bioavailable smoothened antagonists with antitumor activity. J. Med. Chem. 52, 3954–3968 (2009).

    CAS  PubMed  Google Scholar 

  96. Björkhem, I., Meaney, S. & Diczfalusy, U. Oxysterols in human circulation: which role do they have? Curr. Opin. Lipidol. 13, 247–253 (2002).

    PubMed  Google Scholar 

  97. Weber-Boyvat, M., Zhong, W., Yan, D. & Olkkonen, V.M. Oxysterol-binding proteins: functions in cell regulation beyond lipid metabolism. Biochem. Pharmacol. 86, 89–95 (2013).

    CAS  PubMed  Google Scholar 

  98. Patel, R. et al. LXRb is required for glucocorticoid-induced hyperglycemia and hepatosteatosis in mice. J. Clin. Invest. 121, 431–441 (2011).

    CAS  PubMed  Google Scholar 

  99. Hannedouche, S. et al. Oxysterols direct immune cell migration via EBI2. Nature 475, 524–527 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Liu, C. et al. Oxysterols direct B-cell migration through EBI2. Nature 475, 519–523 (2011).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Bruce for assistance with the graphical abstract. We apologize to all investigators whose work could not be cited due to reference limitations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rami N Hannoush or Frederic J de Sauvage.

Ethics declarations

Competing interests

H.J.S. is employed as a postdoctoral researcher by Genentech Inc. R.N.H., W.W. and F.J.d.S. are employed by Genentech Inc. and own shares in Roche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharpe, H., Wang, W., Hannoush, R. et al. Regulation of the oncoprotein Smoothened by small molecules. Nat Chem Biol 11, 246–255 (2015). https://doi.org/10.1038/nchembio.1776

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1776

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer