Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains

Abstract

Nucleocytoplasmic glycosylation of proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is recognized as a conserved post-translational modification found in all metazoans. O-GlcNAc has been proposed to regulate diverse cellular processes. Impaired cellular O-GlcNAcylation has been found to lead to decreases in the levels of various proteins, which is one mechanism by which O-GlcNAc seems to exert its varied physiological effects. Here we show that O-GlcNAcylation also occurs cotranslationally. This process protects nascent polypeptide chains from premature degradation by decreasing cotranslational ubiquitylation. Given that hundreds of proteins are O-GlcNAcylated within cells, our findings suggest that cotranslational O-GlcNAcylation may be a phenomenon regulating proteostasis of an array of nucleocytoplasmic proteins. These findings set the stage to assess whether O-GlcNAcylation has a role in protein quality control in a manner that bears similarity with the role played by N-glycosylation within the secretory pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sp1 is cotranslationally O-GlcNAcylated in a cell-free expression system.
Figure 2: Nascent Sp1 polypeptides are stabilized by cotranslational O-GlcNAcylation in a cell-free system.
Figure 3: Cotranslational O-GlcNAcylation of Sp1 stabilizes nascent polypeptides within cells.
Figure 4: Cotranslational O-GlcNAcylation of Sp1 stabilizes nascent polypeptides from premature proteasomal degradation within cells.
Figure 5: Proposed model for regulation of nascent polypeptide chain stability by cotranslational O-GlcNAcylation.

Similar content being viewed by others

References

  1. Torres, C.R. & Hart, G.W. Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. J. Biol. Chem. 259, 3308–3317 (1984).

    CAS  PubMed  Google Scholar 

  2. Gambetta, M.C., Oktaba, K. & Muller, J. Essential role of the glycosyltransferase sxc/Ogt in polycomb repression. Science 325, 93–96 (2009).

    CAS  PubMed  Google Scholar 

  3. Hanover, J.A., Krause, M.W. & Love, D.C. Bittersweet memories: linking metabolism to epigenetics through O-GlcNAcylation. Nat. Rev. Mol. Cell Biol. 13, 312–321 (2012).

    CAS  PubMed  Google Scholar 

  4. Sinclair, D.A. et al. Drosophila O-GlcNAc transferase (OGT) is encoded by the Polycomb group (PcG) gene, super sex combs (sxc). Proc. Natl. Acad. Sci. USA 106, 13427–13432 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ohn, T., Kedersha, N., Hickman, T., Tisdale, S. & Anderson, P. A functional RNAi screen links O-GlcNAc modification of ribosomal proteins to stress granule and processing body assembly. Nat. Cell Biol. 10, 1224–1231 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zachara, N.E. et al. Dynamic O-GlcNAc modification of nucleocytoplasmic proteins in response to stress. A survival response of mammalian cells. J. Biol. Chem. 279, 30133–30142 (2004).

    CAS  PubMed  Google Scholar 

  7. Kim, E.Y. et al. A role for O-GlcNAcylation in setting circadian clock speed. Genes Dev. 26, 490–502 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Li, M.D. et al. O-GlcNAc signaling entrains the circadian clock by inhibiting BMAL1/CLOCK ubiquitination. Cell Metab. 17, 303–310 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Olivier-Van Stichelen, S. et al. O-GlcNAcylation stabilizes β-catenin through direct competition with phosphorylation at threonine 41. FASEB J. 28, 3325–3338 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang, W.H. et al. Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat. Cell Biol. 8, 1074–1083 (2006).

    CAS  PubMed  Google Scholar 

  11. Park, S.Y. et al. Snail1 is stabilized by O-GlcNAc modification in hyperglycaemic condition. EMBO J. 29, 3787–3796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruan, H.B., Nie, Y. & Yang, X. Regulation of protein degradation by O-GlcNAcylation: crosstalk with ubiquitination. Mol. Cell. Proteomics 12, 3489–3497 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Haltiwanger, R.S., Holt, G.D. & Hart, G.W. Enzymatic addition of O-GlcNAc to nuclear and cytoplasmic proteins. Identification of a uridine diphospho-N-acetylglucosamine:peptide β-N-acetylglucosaminyltransferase. J. Biol. Chem. 265, 2563–2568 (1990).

    CAS  PubMed  Google Scholar 

  14. Lubas, W.A., Frank, D.W., Krause, M. & Hanover, J.A. O-Linked GlcNAc transferase is a conserved nucleocytoplasmic protein containing tetratricopeptide repeats. J. Biol. Chem. 272, 9316–9324 (1997).

    CAS  PubMed  Google Scholar 

  15. Gao, Y., Wells, L., Comer, F.I., Parker, G.J. & Hart, G.W. Dynamic O-glycosylation of nuclear and cytosolic proteins: cloning and characterization of a neutral, cytosolic β-N-acetylglucosaminidase from human brain. J. Biol. Chem. 276, 9838–9845 (2001).

    CAS  PubMed  Google Scholar 

  16. Lazarus, M.B., Nam, Y., Jiang, J., Sliz, P. & Walker, S. Structure of human O-GlcNAc transferase and its complex with a peptide substrate. Nature 469, 564–567 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zeidan, Q., Wang, Z., De Maio, A. & Hart, G.W. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Mol. Biol. Cell 21, 1922–1936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bengtson, M.H. & Joazeiro, C.A. Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467, 470–473 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Duttler, S., Pechmann, S. & Frydman, J. Principles of cotranslational ubiquitination and quality control at the ribosome. Mol. Cell 50, 379–393 (2013).

    CAS  PubMed  Google Scholar 

  20. Wang, F., Durfee, L.A. & Huibregtse, J.M. A cotranslational ubiquitination pathway for quality control of misfolded proteins. Mol. Cell 50, 368–378 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Han, I. & Kudlow, J.E. Reduced O-glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol. Cell. Biol. 17, 2550–2558 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jackson, S.P. & Tjian, R. Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography. Proc. Natl. Acad. Sci. USA 86, 1781–1785 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Roos, M.D., Su, K., Baker, J.R. & Kudlow, J.E. O-glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions. Mol. Cell. Biol. 17, 6472–6480 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Chung, S.S. et al. Activation of PPARγ negatively regulates O-GlcNAcylation of Sp1. Biochem. Biophys. Res. Commun. 372, 713–718 (2008).

    CAS  PubMed  Google Scholar 

  25. Starr, C.M. & Hanover, J.A. Glycosylation of nuclear pore protein p62. Reticulocyte lysate catalyzes O-linked N-acetylglucosamine addition in vitro. J. Biol. Chem. 265, 6868–6873 (1990).

    CAS  PubMed  Google Scholar 

  26. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc–modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000).

    CAS  PubMed  Google Scholar 

  28. Gloster, T.M. et al. Hijacking a biosynthetic pathway yields a glycosyltransferase inhibitor within cells. Nat. Chem. Biol. 7, 174–181 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuzwa, S.A. et al. A potent mechanism-inspired O-GlcNAcase inhibitor that blocks phosphorylation of tau in vivo. Nat. Chem. Biol. 4, 483–490 (2008).

    CAS  PubMed  Google Scholar 

  30. Zhang, F. et al. O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell 115, 715–725 (2003).

    CAS  PubMed  Google Scholar 

  31. Davis, L.I. & Blobel, G. Nuclear pore complex contains a family of glycoproteins that includes p62: glycosylation through a previously unidentified cellular pathway. Proc. Natl. Acad. Sci. USA 84, 7552–7556 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Holt, G.D. et al. Nuclear pore complex glycoproteins contain cytoplasmically disposed O-linked N-acetylglucosamine. J. Cell Biol. 104, 1157–1164 (1987).

    CAS  PubMed  Google Scholar 

  33. Rexach, J.E. et al. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat. Chem. Biol. 6, 645–651 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boyce, M. et al. Metabolic cross-talk allows labeling of O-linked β-N-acetylglucosamine–modified proteins via the N-acetylgalactosamine salvage pathway. Proc. Natl. Acad. Sci. USA 108, 3141–3146 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kazemi, Z., Chang, H., Haserodt, S., McKen, C. & Zachara, N.E. O-linked β-N-acetylglucosamine (O-GlcNAc) regulates stress-induced heat shock protein expression in a GSK-3β–dependent manner. J. Biol. Chem. 285, 39096–39107 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Guinez, C. et al. Protein ubiquitination is modulated by O-GlcNAc glycosylation. FASEB J. 22, 2901–2911 (2008).

    CAS  PubMed  Google Scholar 

  37. Hardivillé, S., Hoedt, E., Mariller, C., Benaissa, M. & Pierce, A. O-GlcNAcylation/phosphorylation cycling at Ser10 controls both transcriptional activity and stability of Δ-lactoferrin. J. Biol. Chem. 285, 19205–19218 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Hart, G.W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Forsythe, M.E. et al. Caenorhabditis elegans ortholog of a diabetes susceptibility locus: oga-1 (O-GlcNAcase) knockout impacts O-GlcNAc cycling, metabolism, and dauer. Proc. Natl. Acad. Sci. USA 103, 11952–11957 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hanover, J.A. et al. A Caenorhabditis elegans model of insulin resistance: altered macronutrient storage and dauer formation in an OGT-1 knockout. Proc. Natl. Acad. Sci. USA 102, 11266–11271 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hart, G.W., Housley, M.P. & Slawson, C. Cycling of O-linked β-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 446, 1017–1022 (2007).

    CAS  PubMed  Google Scholar 

  42. Radermacher, P.T. et al. O-GlcNAc reports ambient temperature and confers heat resistance on ectotherm development. Proc. Natl. Acad. Sci. USA 111, 5592–5597 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Helenius, A. & Aebi, M. Roles of N-linked glycans in the endoplasmic reticulum. Annu. Rev. Biochem. 73, 1019–1049 (2004).

    CAS  PubMed  Google Scholar 

  44. Trombetta, E.S. & Parodi, A.J. Quality control and protein folding in the secretory pathway. Annu. Rev. Cell Dev. Biol. 19, 649–676 (2003).

    CAS  PubMed  Google Scholar 

  45. Moremen, K.W. & Molinari, M. N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr. Opin. Struct. Biol. 16, 592–599 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hebert, D.N., Garman, S.C. & Molinari, M. The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370 (2005).

    CAS  PubMed  Google Scholar 

  47. Rothman, J.E. & Lodish, H.F. Synchronised transmembrane insertion and glycosylation of a nascent membrane protein. Nature 269, 775–780 (1977).

    CAS  PubMed  Google Scholar 

  48. Chen, W., Helenius, J., Braakman, I. & Helenius, A. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc. Natl. Acad. Sci. USA 92, 6229–6233 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Bolt, G., Kristensen, C. & Steenstrup, T.D. Posttranslational N-glycosylation takes place during the normal processing of human coagulation factor VII. Glycobiology 15, 541–547 (2005).

    CAS  PubMed  Google Scholar 

  50. Ruiz-Canada, C., Kelleher, D.J. & Gilmore, R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 136, 272–283 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hobden, A.N. & Cundliffe, E. The mode of action of α-sarcin and a novel assay of the puromycin reaction. Biochem. J. 170, 57–61 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, C. & Okayama, H. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7, 2745–2752 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support through a Discovery Grant (grant number: RGPIN/298406-2010) the Natural Sciences and Engineering Research (NSERC) and the Canadian Institutes of Health Research (CIHR; grant number: MOP-123341) is gratefully acknowledged. Y.Z. thanks the CIHR for support through a postdoctoral fellowship. D.J.V. acknowledges the kind support of the Canada Research Chairs program for a Tier I Canada Research Chair in Chemical Glycobiology and NSERC for support as an E.W.R. Steacie Memorial Fellow. S.C. acknowledges the Government of Canada and the CIHR for postdoctoral fellowship support. R.E. acknowledges the Alzheimer Society of Canada and the Michael Smith Foundation for Health Research for postdoctoral fellowship support.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and D.J.V. designed research; Y.Z. and T.-W.L. performed experiments; R.E. synthesized UDP-GlcNAz; W.F.Z. synthesized UDP-5SGlcNAc; S.C. synthesized the biotin-diazo-phosphine probe; Y.Z. and D.J.V. wrote the paper; all authors provided input into the manuscript.

Corresponding author

Correspondence to David J Vocadlo.

Ethics declarations

Competing interests

D.J.V. is a cofounder of Alectos Therapeutics, a company involved in the development of OGA modulators for the treatment of Alzheimer's disease. D.J.V. serves as CSO and chair of the Scientific Advisory Board of Alectos Therapeutics.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–9 and Supplementary Note (PDF 3313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Liu, TW., Cecioni, S. et al. O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat Chem Biol 11, 319–325 (2015). https://doi.org/10.1038/nchembio.1774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1774

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing