Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Collective antibiotic tolerance: mechanisms, dynamics and intervention

Abstract

Bacteria have developed resistance against every antibiotic at a rate that is alarming considering the timescale at which new antibiotics are developed. Thus, there is a critical need to use antibiotics more effectively, extend the shelf life of existing antibiotics and minimize their side effects. This requires understanding the mechanisms underlying bacterial drug responses. Past studies have focused on survival in the presence of antibiotics by individual cells, as genetic mutants or persisters. Also important, however, is the fact that a population of bacterial cells can collectively survive antibiotic treatments lethal to individual cells. This tolerance can arise by diverse mechanisms, including resistance-conferring enzyme production, titration-mediated bistable growth inhibition, swarming and interpopulation interactions. These strategies can enable rapid population recovery after antibiotic treatment and provide a time window during which otherwise susceptible bacteria can acquire inheritable genetic resistance. Here, we emphasize the potential for targeting collective antibiotic tolerance behaviors as an antibacterial treatment strategy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bacterial survival modes.
Figure 2: Comparison of population-level responses due to different forms of CAT or persistence.
Figure 3: Underlying mechanisms of CAT.
Figure 4: Inhibition strategies.

References

  1. Levy, S.B. & Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat. Med. 10, S122–S129 (2004).

    CAS  PubMed  Google Scholar 

  2. Projan, S.J. Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6, 427–430 (2003).

    PubMed  Google Scholar 

  3. Fishman, N. Antimicrobial stewardship. Am. J. Infect. Control 34, S55–S63 (2006).

    PubMed  Google Scholar 

  4. Davies, J. & Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tuomanen, E., Durack, D. & Tomasz, A. Antibiotic tolerance among clinical isolates of bacteria. Antimicrob. Agents Chemother. 30, 521–527 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewis, K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 5, 48–56 (2007).

    CAS  PubMed  Google Scholar 

  7. Johnson, P.J. & Levin, B.R. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet. 9, e1003123 (2013).This study demonstrates that persister formation in Staphylococcus aureus can be modulated by subinhibitory antibiotic concentrations. The authors argue that persistence can arise as the result of replication errors and variation in metabolic activity, as opposed to being an evolved characteristic.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Levin, B.R. & Rozen, D.E. Non-inherited antibiotic resistance. Nat. Rev. Microbiol. 4, 556–562 (2006).

    CAS  PubMed  Google Scholar 

  9. Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L. & Leibler, S. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625 (2004).This study uses microfluidics to examine growth rate differences between persistent and proliferative cells. The authors demonstrate the emergence to two classes of persisters: those that are non-growing at stationary phase, and those that are formed by spontaneous switching from a proliferative state during exponential growth.

    CAS  PubMed  Google Scholar 

  10. Tan, C. et al. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Mol. Syst. Biol. 8, 617 (2012).Integrating mathematical modeling and experiments, the authors show that antibiotics that inhibit bacterial replication machinery and induce a heat-shock response can result in density-dependent population survival. Furthermore, they demonstrate that periodic dosing can lead to a bandpass filtering response, wherein populations can survive under intermediate dosing frequencies.

    PubMed  PubMed Central  Google Scholar 

  11. Lee, J.H. & Lee, J. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev. 34, 426–444 (2010).

    CAS  PubMed  Google Scholar 

  12. Hu, B., Du, J., Zou, R.-y. & Yuan, Y.-j. An environment-sensitive synthetic microbial ecosystem. PLoS ONE 5, e10619 (2010).This manuscript uses a synthetic system to show how mutualism can result in collective antibiotic tolerance. Individually, the bacterial strains would be sensitive to an antibiotic; when they are together, however, they upregulate each other's antibiotic tolerance mechanisms.

    PubMed  PubMed Central  Google Scholar 

  13. Tanouchi, Y., Lee, A.J., Meredith, H. & You, L. Programmed cell death in bacteria and implications for antibiotic therapy. Trends Microbiol. 21, 265–270 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nedelcu, A.M., Driscoll, W.W., Durand, P.M., Herron, M.D. & Rashidi, A. On the paradigm of altruistic suicide in the unicellular world. Evolution 65, 3–20 (2011).

    PubMed  Google Scholar 

  15. Thomson, K.S. & Moland, E.S. Cefepime, piperacillin-tazobactam, and the inoculum effect in tests with extended-spectrum β-lactamase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 45, 3548–3554 (2001).This study investigates the efficacy of several β-lactam antibiotics against various extended-spectrum β-lactamase (ESBL)-producing strains. The authors found that higher inocula exhibited at least an eightfold higher MIC for the drugs tested, implying that β-lactamase production can be a mechanism for density-dependent survival.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sykes, R.B. & Matthew, M. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2, 115–157 (1976).

    CAS  PubMed  Google Scholar 

  17. Kolodkin-Gal, I., Sat, B., Keshet, A. & Engelberg-Kulka, H. The communication factor EDF and the toxin–antitoxin module mazEF determine the mode of action of antibiotics. PLoS Biol. 6, e319 (2008).

    PubMed  PubMed Central  Google Scholar 

  18. Engelberg-Kulka, H., Sat, B., Reches, M., Amitai, S. & Hazan, R. Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol. 12, 66–71 (2004).

    CAS  PubMed  Google Scholar 

  19. McGannon, C.M., Fuller, C.A. & Weiss, A.A. Different classes of antibiotics differentially influence Shiga toxin production. Antimicrob. Agents Chemother. 54, 3790–3798 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Plunkett, G., Rose, D.J., Durfee, T.J. & Blattner, F.R. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157: H7: Shiga toxin as a phage late-gene product. J. Bacteriol. 181, 1767–1778 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lainhart, W., Stolfa, G. & Koudelka, G.B. Shiga toxin as a bacterial defense against a eukaryotic predator, Tetrahymena thermophila. J. Bacteriol. 191, 5116–5122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Miller, M.B. & Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).

    CAS  PubMed  Google Scholar 

  23. Hammer, B.K. & Bassler, B.L. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol. Microbiol. 50, 101–104 (2003).

    CAS  PubMed  Google Scholar 

  24. Pai, A., Tanouchi, Y. & You, L. Optimality and robustness in quorum sensing (QS)-mediated regulation of a costly public good enzyme. Proc. Natl. Acad. Sci. USA 109, 19810–19815 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Robicsek, A. et al. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat. Med. 12, 83–88 (2006).

    CAS  PubMed  Google Scholar 

  26. Ding, X., Baca-DeLancey, R.R. & Rather, P.N. Role of SspA in the density-dependent expression of the transcriptional activator AarP in Providencia stuartii. FEMS Microbiol. Lett. 196, 25–29 (2001).

    CAS  PubMed  Google Scholar 

  27. Juhas, M., Eberl, L. & Tümmler, B. Quorum sensing: the power of cooperation in the world of Pseudomonas. Environ. Microbiol. 7, 459–471 (2005).This review discusses the role of quorum sensing in P. aeruginosa virulence, particularly the coupled Las and Rhl motifs. The authors also discuss the potential of interfering with quorum sensing systems as an antimicrobial strategy.

    CAS  PubMed  Google Scholar 

  28. Davies, D.G. et al. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280, 295–298 (1998).

    CAS  PubMed  Google Scholar 

  29. Ishida, H. et al. In vitro and in vivo activities of levofloxacin against biofilm-producing Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 42, 1641–1645 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Singh, R., Ray, P., Das, A. & Sharma, M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Antimicrob. Chemother. 65, 1955–1958 (2010).

    CAS  PubMed  Google Scholar 

  31. Anderl, J.N., Franklin, M.J. & Stewart, P.S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 44, 1818–1824 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Giwercman, B., Jensen, E., Høiby, N., Kharazmi, A. & Costerton, J. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm. Antimicrob. Agents Chemother. 35, 1008–1010 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Costerton, J.W., Stewart, P.S. & Greenberg, E. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–1322 (1999).

    CAS  PubMed  Google Scholar 

  34. Craig, W.A., Bhavnani, S.M. & Ambrose, P.G. The inoculum effect: fact or artifact? Diagn. Microbiol. Infect. Dis. 50, 229–230 (2004).

    PubMed  Google Scholar 

  35. Udekwu, K.I., Parrish, N., Ankomah, P., Baquero, F. & Levin, B.R. Functional relationship between bacterial cell density and the efficacy of antibiotics. J. Antimicrob. Chemother. 63, 745–757 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tadmor, A.D. & Tlusty, T. A coarse-grained biophysical model of E. coli and its application to perturbation of the rRNA operon copy number. PLoS Comput. Biol. 4, e1000038 (2008).

    PubMed  PubMed Central  Google Scholar 

  37. Thron, C. Bistable biochemical switching and the control of the events of the cell cycle. Oncogene 15, 317–325 (1997).

    CAS  PubMed  Google Scholar 

  38. VanBogelen, R.A. & Neidhardt, F.C. Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 5589–5593 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sykes, M.T., Shajani, Z., Sperling, E., Beck, A.H. & Williamson, J.R. Quantitative proteomic analysis of ribosome assembly and turnover in vivo. J. Mol. Biol. 403, 331–345 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rice, K.C. et al. The Staphylococcus aureus cidAB operon: evaluation of its role in regulation of murein hydrolase activity and penicillin tolerance. J. Bacteriol. 185, 2635–2643 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Rice, K.C. et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 104, 8113–8118 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bayles, K.W. The biological role of death and lysis in biofilm development. Nat. Rev. Microbiol. 5, 721–726 (2007).

    CAS  PubMed  Google Scholar 

  43. Groicher, K.H., Firek, B.A., Fujimoto, D.F. & Bayles, K.W. The Staphylococcus aureus lrgAB operon modulates murein hydrolase activity and penicillin tolerance. J. Bacteriol. 182, 1794–1801 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Köhler, T., Curty, L.K., Barja, F., van Delden, C. & Pechère, J.-C. Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J. Bacteriol. 182, 5990–5996 (2000).

    PubMed  PubMed Central  Google Scholar 

  45. Butler, M.T., Wang, Q. & Harshey, R.M. Cell density and mobility protect swarming bacteria against antibiotics. Proc. Natl. Acad. Sci. USA 107, 3776–3781 (2010).This work shows that a swarming phenotype promotes bacterial survival of antibiotic treatment. The authors demonstrate that this survival advantage is not due to quorum sensing or induced resistance pathways, but rather occurs at a cost to cells directly exposed to antibiotic.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, W., Killam, T., Sood, V. & Surette, M.G. Swarm-cell differentiation in Salmonella enterica serovar Typhimurium results in elevated resistance to multiple antibiotics. J. Bacteriol. 185, 3111–3117 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Verstraeten, N. et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 16, 496–506 (2008).

    CAS  PubMed  Google Scholar 

  48. van Ditmarsch, D. et al. Convergent evolution of hyperswarming leads to impaired biofilm formation in pathogenic bacteria. Cell Reports 4, 697–708 (2013).This study shows that a swarming phenotype is inversely correlated with biofilm formation in P. aeruginosa , suggesting an evolutionary tradeoff between these two mechanisms of antibiotic tolerance.

    CAS  PubMed  Google Scholar 

  49. Overhage, J., Bains, M., Brazas, M.D. & Hancock, R.E. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J. Bacteriol. 190, 2671–2679 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gunn, J.S. Bacterial modification of LPS and resistance to antimicrobial peptides. J. Endotoxin Res. 7, 57–62 (2001).

    CAS  PubMed  Google Scholar 

  51. Lee, H.H., Molla, M.N., Cantor, C.R. & Collins, J.J. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85 (2010).This study demonstrates how collective tolerance can arise in a mixed population. Specifically, a population consisting largely of antibiotic-sensitive bacteria can survive treatment if a fraction of the population is resistant mutants that produce enough signaling molecule for the entire population to increase tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Andersen, J.B. et al. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67, 575–585 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Moons, P., Michiels, C.W. & Aertsen, A. Bacterial interactions in biofilms. Crit. Rev. Microbiol. 35, 157–168 (2009).

    CAS  PubMed  Google Scholar 

  54. Allison, D.G. & Matthews, M. Effect of polysaccharide interactions on antibiotic susceptibility of Pseudomonas aeruginosa. J. Appl. Bacteriol. 73, 484–488 (1992).

    CAS  PubMed  Google Scholar 

  55. Kurioka, T., Yunou, Y., Harada, H. & Kita, E. Efficacy of antibiotic therapy for infection with Shiga-like toxin-producing Escherichia coli O157: H7 in mice with protein-calorie malnutrition. Eur. J. Clin. Microbiol. Infect. Dis. 18, 561–571 (1999).

    CAS  PubMed  Google Scholar 

  56. Kumon, H., Ono, N., Iida, M. & Nickel, J.C. Combination effect of fosfomycin and ofloxacin against Pseudomonas aeruginosa growing in a biofilm. Antimicrob. Agents Chemother. 39, 1038–1044 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Wolcott, R.D. et al. Biofilm maturity studies indicate sharp debridement opens a time-dependent therapeutic window. J. Wound Care 19, 320–328 (2010).

    CAS  PubMed  Google Scholar 

  58. Jacoby, G.A. AmpC β-lactamases. Clin. Microbiol. Rev. 22, 161–182 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Drawz, S.M. & Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev. 23, 160–201 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Chaïbi, E.B., Sirot, D., Paul, G. & Labia, R. Inhibitor-resistant TEM β-lactamases: phenotypic, genetic and biochemical characteristics. J. Antimicrob. Chemother. 43, 447–458 (1999).

    PubMed  Google Scholar 

  61. Mutschler, H. & Meinhart, A. ɛ/ζ systems: their role in resistance, virulence, and their potential for antibiotic development. J. Mol. Med. 89, 1183–1194 (2011).

    CAS  PubMed  Google Scholar 

  62. Lioy, V.S., Rey, O., Balsa, D., Pellicer, T. & Alonso, J.C. A toxin–antitoxin module as a target for antimicrobial development. Plasmid 63, 31–39 (2010).

    CAS  PubMed  Google Scholar 

  63. Berry, A.M., Lock, R.A., Hansman, D. & Paton, J.C. Contribution of autolysin to virulence of Streptococcus pneumoniae. Infect. Immun. 57, 2324–2330 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Tanouchi, Y., Pai, A., Buchler, N.E. & You, L. Programming stress-induced altruistic death in engineered bacteria. Mol. Syst. Biol. 8, 626 (2012).This study uses a synthetic system to demonstrate the conditions under which programmed cell death can benefit a population. In particular, a population has to be producing sufficient amounts of a public good (such as β-lactamase) to benefit from lysing; otherwise the population will go extinct.

    PubMed  PubMed Central  Google Scholar 

  65. Tateda, K. et al. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 45, 1930–1933 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. van Delden, C. et al. Azithromycin to prevent Pseudomonas aeruginosa ventilator-associated pneumonia by inhibition of quorum sensing: a randomized controlled trial. Intensive Care Med. 38, 1118–1125 (2012).

    PubMed  Google Scholar 

  67. Dong, Y.-H., Xu, J.-L., Li, X.-Z. & Zhang, L.-H. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97, 3526–3531 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. O'Loughlin, C.T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA 110, 17981–17986 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Brackman, G., Cos, P., Maes, L., Nelis, H.J. & Coenye, T. Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob. Agents Chemother. 55, 2655–2661 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Soong, G. et al. Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J. Clin. Invest. 116, 2297–2305 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mehta, R. & Champney, W.S. 30S ribosomal subunit assembly is a target for inhibition by aminoglycosides in Escherichia coli. Antimicrob. Agents Chemother. 46, 1546–1549 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Maisonneuve, E. & Gerdes, K. Molecular mechanisms underlying bacterial persisters. Cell 157, 539–548 (2014).

    CAS  PubMed  Google Scholar 

  73. Dalebroux, Z.D., Svensson, S.L., Gaynor, E.C. & Swanson, M.S. ppGpp conjures bacterial virulence. Microbiol. Mol. Biol. Rev. 74, 171–199 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    CAS  PubMed  Google Scholar 

  75. Toguchi, A., Siano, M., Burkart, M. & Harshey, R.M. Genetics of swarming motility in Salmonella enterica serovar Typhimurium: critical role for lipopolysaccharide. J. Bacteriol. 182, 6308–6321 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Mireles, J.R., Toguchi, A. & Harshey, R.M. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J. Bacteriol. 183, 5848–5854 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Brook, I., Pazzaglia, G., Coolbaugh, J.C. & Walker, R.I. In-vivo protection of group A β-haemolytic streptococci from penicillin by β-lactamase-producing Bacteroides species. J. Antimicrob. Chemother. 12, 599–606 (1983).

    CAS  PubMed  Google Scholar 

  78. Citorik, R.J., Mimee, M. & Lu, T.K. Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat. Biotechnol. 32, 1141–1145 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Bikard, D. et al. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat. Biotechnol. 32, 1146–1150 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Eagle, H. & Musselman, A.D. The rate of bactericidal action of penicillin in vitro as a function of its concentration, and its paradoxically reduced activity at high concentrations against certain organisms. J. Exp. Med. 88, 99–131 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hentzer, M. et al. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J. 22, 3803–3815 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Hentzer, M. & Givskov, M. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Invest. 112, 1300–1307 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Köhler, T., Perron, G.G., Buckling, A. & Van Delden, C. Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog. 6, e1000883 (2010).This work presents clinical evidence that inhibiting quorum sensing counterintuitively selects for virulent pathogens in the long term.

    PubMed  PubMed Central  Google Scholar 

  84. Nalca, Y. et al. Quorum-sensing antagonistic activities of azithromycin in Pseudomonas aeruginosa PAO1: a global approach. Antimicrob. Agents Chemother. 50, 1680–1688 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Schuster, M., Joseph Sexton, D., Diggle, S.P. & Peter Greenberg, E. Acyl-homoserine lactone quorum sensing: from evolution to application. Annu. Rev. Microbiol. 67, 43–63 (2013).

    CAS  PubMed  Google Scholar 

  86. Sandoz, K.M., Mitzimberg, S.M. & Schuster, M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc. Natl. Acad. Sci. USA 104, 15876–15881 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. André, J.B. & Godelle, B. Multicellular organization in bacteria as a target for drug therapy. Ecol. Lett. 8, 800–810 (2005).

    Google Scholar 

  88. Dandekar, A.A., Chugani, S. & Greenberg, E.P. Bacterial quorum sensing and metabolic incentives to cooperate. Science 338, 264–266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chuang, J.S., Rivoire, O. & Leibler, S. Simpson's paradox in a synthetic microbial system. Science 323, 272–275 (2009).

    CAS  PubMed  Google Scholar 

  90. Tanouchi, Y., Smith, R.P. & You, L. Engineering microbial systems to explore ecological and evolutionary dynamics. Curr. Opin. Biotechnol. 23, 791–797 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Darch, S.E., West, S.A., Winzer, K. & Diggle, S.P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proc. Natl. Acad. Sci. USA 109, 8259–8263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Yurtsev, E.A., Chao, H.X., Datta, M.S., Artemova, T. & Gore, J. Bacterial cheating drives the population dynamics of cooperative antibiotic resistance plasmids. Mol. Syst. Biol. 9, 300–308 (2013).

    Google Scholar 

  93. Allen, R.C., Popat, R., Diggle, S.P. & Brown, S.P. Targeting virulence: can we make evolution-proof drugs? Nat. Rev. Microbiol. 12, 300–308 (2014).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in our lab related to the topic of this article is in part funded by the US National Institutes of Health, National Science Foundation and Army Research Office and by the David and Lucile Packard Foundation. H.R.M. acknowledges the National Science Foundation Graduate Research Fellowship Program; J.K.S. acknowledges a Duke Center for Biomolecular and Tissue Engineering graduate fellowship; and A.J. Lopatkin acknowledges the Howard G. Clark fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingchong You.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meredith, H., Srimani, J., Lee, A. et al. Collective antibiotic tolerance: mechanisms, dynamics and intervention. Nat Chem Biol 11, 182–188 (2015). https://doi.org/10.1038/nchembio.1754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1754

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research