Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria

This article has been updated

Abstract

In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond. These proteins include numerous bacterial virulence factors, and thus bacterial enzymes that promote disulfide bond formation represent targets for compounds inhibiting bacterial virulence. Here, we describe a new target- and cell-based screening methodology for identifying compounds that inhibit the disulfide bond–forming enzymes Escherichia coli DsbB (EcDsbB) or Mycobacterium tuberculosis VKOR (MtbVKOR), which can replace EcDsbB, although the two are not homologs. Initial screening of 51,487 compounds yielded six specifically inhibiting EcDsbB. These compounds share a structural motif and do not inhibit MtbVKOR. A medicinal chemistry approach led us to select related compounds, some of which are much more effective DsbB inhibitors than those found in the screen. These compounds inhibit purified DsbB and prevent anaerobic growth of E. coli. Furthermore, these compounds inhibit all but one of the DsbBs of nine other Gram-negative pathogenic bacteria tested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DsbB pathway and screening basis.
Figure 2: In vivo and in vitro inhibition of EcDsbB by compounds 9 and 12.
Figure 3: In vivo inhibition of DsbB enzymes from Gram-negative bacteria expressed in E. coli.

Similar content being viewed by others

Change history

  • 19 February 2015

    In the version of this article initially published online, the organism Mycobacterium tuberculosis was incorrectly named Mycoplasma tuberculosis. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Heras, B. et al. DSB proteins and bacterial pathogenicity. Nat. Rev. Microbiol. 7, 215–225 (2009).

    Article  CAS  Google Scholar 

  2. Depuydt, M., Messens, J. & Collet, J.F. How proteins form disulfide bonds. Antioxid. Redox Signal. 15, 49–66 (2011).

    Article  CAS  Google Scholar 

  3. Kadokura, H. & Beckwith, J. Mechanisms of oxidative protein folding in the bacterial cell envelope. Antioxid. Redox Signal. 13, 1231–1246 (2010).

    Article  CAS  Google Scholar 

  4. Bardwell, J.C., McGovern, K. & Beckwith, J. Identification of a protein required for disulfide bond formation in vivo. Cell 67, 581–589 (1991).

    Article  CAS  Google Scholar 

  5. Dutton, R.J., Boyd, D., Berkmen, M. & Beckwith, J. Bacterial species exhibit diversity in their mechanisms and capacity for protein disulfide bond formation. Proc. Natl. Acad. Sci. USA 105, 11933–11938 (2008).

    Article  CAS  Google Scholar 

  6. Li, W. et al. Structure of a bacterial homologue of vitamin K epoxide reductase. Nature 463, 507–512 (2010).

    Article  CAS  Google Scholar 

  7. Wang, X., Dutton, R.J., Beckwith, J. & Boyd, D. Membrane topology and mutational analysis of Mycobacterium tuberculosis VKOR, a protein involved in disulfide bond formation and a homologue of human vitamin K epoxide reductase. Antioxid. Redox Signal. 14, 1413–1420 (2011).

    Article  CAS  Google Scholar 

  8. Premkumar, L. et al. Rv2969c, essential for optimal growth in Mycobacterium tuberculosis, is a DsbA-like enzyme that interacts with VKOR-derived peptides and has atypical features of DsbA-like disulfide oxidases. Acta Crystallogr. D Biol. Crystallogr. 69, 1981–1994 (2013).

    Article  CAS  Google Scholar 

  9. Dutton, R.J. et al. Inhibition of bacterial disulfide bond formation by the anticoagulant warfarin. Proc. Natl. Acad. Sci. USA 107, 297–301 (2010).

    Article  CAS  Google Scholar 

  10. Sassetti, C.M., Boyd, D.H. & Rubin, E.J. Genes required for mycobacterial growth defined by high density mutagenesis. Mol. Microbiol. 48, 77–84 (2003).

    Article  CAS  Google Scholar 

  11. Froshauer, S., Green, G.N., Boyd, D., McGovern, K. & Beckwith, J. Genetic analysis of the membrane insertion and topology of MalF, a cytoplasmic membrane protein of Escherichia coli. J. Mol. Biol. 200, 501–511 (1988).

    Article  CAS  Google Scholar 

  12. Tian, H., Boyd, D. & Beckwith, J. A mutant hunt for defects in membrane protein assembly yields mutations affecting the bacterial signal recognition particle and Sec machinery. Proc. Natl. Acad. Sci. USA 97, 4730–4735 (2000).

    Article  CAS  Google Scholar 

  13. Tian, H. & Beckwith, J. Genetic screen yields mutations in genes encoding all known components of the Escherichia coli signal recognition particle pathway. J. Bacteriol. 184, 111–118 (2002).

    Article  CAS  Google Scholar 

  14. Goldman, R.C. & Laughon, B.E. Discovery and validation of new antitubercular compounds as potential drug leads and probes. Tuberculosis (Edinb.) 89, 331–333 (2009).

    Article  CAS  Google Scholar 

  15. Regeimbal, J. et al. Disulfide bond formation involves a quinhydrone-type charge-transfer complex. Proc. Natl. Acad. Sci. USA 100, 13779–13784 (2003).

    Article  CAS  Google Scholar 

  16. Inaba, K. et al. DsbB elicits a red-shift of bound ubiquinone during the catalysis of DsbA oxidation. J. Biol. Chem. 279, 6761–6768 (2004).

    Article  CAS  Google Scholar 

  17. Inaba, K., Takahashi, Y.H., Ito, K. & Hayashi, S. Critical role of a thiolate-quinone charge transfer complex and its adduct form in de novo disulfide bond generation by DsbB. Proc. Natl. Acad. Sci. USA 103, 287–292 (2006).

    Article  CAS  Google Scholar 

  18. Grimshaw, J.P. et al. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J. Mol. Biol. 380, 667–680 (2008).

    Article  CAS  Google Scholar 

  19. Lin, D., Kim, B. & Slauch, J.M. DsbL and DsbI contribute to periplasmic disulfide bond formation in Salmonella enterica serovar Typhimurium. Microbiology 155, 4014–4024 (2009).

    Article  CAS  Google Scholar 

  20. Harvey, H., Habash, M., Aidoo, F. & Burrows, L.L. Single-residue changes in the C-terminal disulfide-bonded loop of the Pseudomonas aeruginosa type IV pilin influence pilus assembly and twitching motility. J. Bacteriol. 191, 6513–6524 (2009).

    Article  CAS  Google Scholar 

  21. Ha, U.H., Wang, Y. & Jin, S. DsbA of Pseudomonas aeruginosa is essential for multiple virulence factors. Infect. Immun. 71, 1590–1595 (2003).

    Article  CAS  Google Scholar 

  22. Kim, S.H., Park, S.Y., Heo, Y.J. & Cho, Y.H. Drosophila melanogaster-based screening for multihost virulence factors of Pseudomonas aeruginosa PA14 and identification of a virulence-attenuating factor, HudA. Infect. Immun. 76, 4152–4162 (2008).

    Article  CAS  Google Scholar 

  23. Arts, I.S. et al. Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. MBio 4, e00912–e00913 (2013).

    Article  Google Scholar 

  24. Hatahet, F., Boyd, D. & Beckwith, J. Disulfide bond formation in prokaryotes: History, diversity and design. Biochim. Biophys. Acta 1844, 1402–1414 (2014).

    Article  CAS  Google Scholar 

  25. Hatahet, F. & Ruddock, L.W. Topological plasticity of enzymes involved in disulfide bond formation allows catalysis in either the periplasm or the cytoplasm. J. Mol. Biol. 425, 3268–3276 (2013).

    Article  CAS  Google Scholar 

  26. Li, T. et al. Identification of the gene for vitamin K epoxide reductase. Nature 427, 541–544 (2004).

    Article  CAS  Google Scholar 

  27. Westhofen, P. et al. Human vitamin K 2,3-epoxide reductase complex subunit 1-like 1 (VKORC1L1) mediates vitamin K-dependent intracellular antioxidant function. J. Biol. Chem. 286, 15085–15094 (2011).

    Article  CAS  Google Scholar 

  28. Früh, V. et al. Application of fragment-based drug discovery to membrane proteins: identification of ligands of the integral membrane enzyme DsbB. Chem. Biol. 17, 881–891 (2010).

    Article  Google Scholar 

  29. Clatworthy, A.E., Pierson, E. & Hung, D.T. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol. 3, 541–548 (2007).

    Article  CAS  Google Scholar 

  30. O'Loughlin, C.T. et al. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA 110, 17981–17986 (2013).

    Article  CAS  Google Scholar 

  31. Hassett, D.J. et al. Pseudomonas aeruginosa hypoxic or anaerobic biofilm infections within cystic fibrosis airways. Trends Microbiol. 17, 130–138 (2009).

    Article  CAS  Google Scholar 

  32. Kolpen, M. et al. Nitrous oxide production in sputum from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection. PLoS ONE 9, e84353 (2014).

    Article  Google Scholar 

  33. Singh, J., Petter, R.C., Baillie, T.A. & Whitty, A. The resurgence of covalent drugs. Nat. Rev. Drug Discov. 10, 307–317 (2011).

    Article  CAS  Google Scholar 

  34. Mah, R., Thomas, J.R. & Shafer, C.M. Drug discovery considerations in the development of covalent inhibitors. Bioorg. Med. Chem. Lett. 24, 33–39 (2014).

    Article  CAS  Google Scholar 

  35. Boyd, D., Weiss, D.S., Chen, J.C. & Beckwith, J. Towards single-copy gene expression systems making gene cloning physiologically relevant: lambda InCh, a simple Escherichia coli plasmid-chromosome shuttle system. J. Bacteriol. 182, 842–847 (2000).

    Article  CAS  Google Scholar 

  36. Haldimann, A. & Wanner, B.L. Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure-function studies of bacteria. J. Bacteriol. 183, 6384–6393 (2001).

    Article  CAS  Google Scholar 

  37. Larsen, M.H., Biermann, K. & Jacobs, W.R. Jr. Laboratory maintenance of Mycobacterium tuberculosis. Curr. Protoc. Microbiol. Chapter 10, Unit 10A.1 (2007).

  38. Chng, S.S. et al. Overexpression of the rhodanese PspE, a single cysteine-containing protein, restores disulphide bond formation to an Escherichia coli strain lacking DsbA. Mol. Microbiol. 85, 996–1006 (2012).

    Article  CAS  Google Scholar 

  39. Kadokura, H., Bader, M., Tian, H., Bardwell, J.C. & Beckwith, J. Roles of a conserved arginine residue of DsbB in linking protein disulfide-bond-formation pathway to the respiratory chain of Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 10884–10889 (2000).

    Article  CAS  Google Scholar 

  40. Weiss, D.S., Chen, J.C., Ghigo, J.M., Boyd, D. & Beckwith, J. Localization of FtsI (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J. Bacteriol. 181, 508–520 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Thibodeau, S.A., Fang, R. & Joung, J.K. High-throughput beta-galactosidase assay for bacterial cell-based reporter systems. Biotechniques 36, 410–415 (2004).

    Article  CAS  Google Scholar 

  42. Semmler, A.B., Whitchurch, C.B. & Mattick, J.S. A re-examination of twitching motility in Pseudomonas aeruginosa. Microbiology 145, 2863–2873 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ICCB-Longwood screening facility for access to their compound libraries, equipment and, screening supplies, and the staff, including S. Chiang, K. Lee, S. Rudnicki and D. Flood, for helpful advice and data handling. We thank R. Goldman of the US National Institute of Allergy and Infectious disease for the collection of M. tuberculosis growth inhibitors. We thank R. Tomaino of the Taplin Mass Spectrometry Core Facility at Harvard Medical School for his assistance in sample analysis. This work was supported by US National Institute of General Medical Sciences grants GMO41883 (to J.B. and D.B.), Harvard Catalyst Pilot Grant Harvard #149734 (to J.B.), US National Institutes of Health (NIH) Grant 5-UL1RR02568-01 (to J.B.), Blavatnik Biomedical Accelerator at Harvard University (to J.B.), NIH Grant 3P01-A1AI074805-04S1 Subaward R01638 (to E.J.R.), NIH Grant PO1-HL087203 (to B.F.), NIH Grant RO1-HL092125 (to B.C.F.) and New England Regional Center of Excellence for Biodefense and Emerging Infectious Diseases (NERCE-BEID) Grant U54-AI057159. C.L. was partially supported by a Consejo Nacional de Ciencia y Tecnología (CONACYT) postdoctoral fellowship. J.L.B. was supported by T32-HL07917 Grant (to B.F.). B.M.M. was supported by a Ruth L. Kirschstein National Research Service Award. M.E. was supported by a New England BioLabs Grant. A.M. was supported by a Harvard School of Public Health Yerby postdoctoral fellowship. J.B. is an American Cancer Society Professor.

Author information

Authors and Affiliations

Authors

Contributions

M.E. developed the agar assay. J.L.B., M.E., R.D., H.A., N.K. and D.B. performed the HTS. J.L.B. performed cherry-pick tests. J.L.B. and C.L. performed inhibitor retests. C.L. performed substructure analysis, in vivo DsbA and DsbB inhibition and other Gram-negative bacteria assays. F.H. performed enzyme kinetics and in vitro analysis. B.M.M. performed anaerobic and M. smegmatis growth assays. L.B., B.C.F. and B.F. performed in vitro mice VKOR assays. A.M., S.M. and E.J.R. performed M. tuberculosis growth assays. C.L., J.L.B., F.H., B.M.M., D.B. and J.B. analyzed and discussed the data. C.L. and J.B. wrote the paper.

Corresponding author

Correspondence to Jon Beckwith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–5 and Supplementary Tables 1–5. (PDF 11836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landeta, C., Blazyk, J., Hatahet, F. et al. Compounds targeting disulfide bond forming enzyme DsbB of Gram-negative bacteria. Nat Chem Biol 11, 292–298 (2015). https://doi.org/10.1038/nchembio.1752

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1752

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research