Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Green fluorescent proteins are light-induced electron donors

Abstract

Proteins of the green fluorescent protein (GFP) family are well known owing to their unique biochemistry and extensive use as in vivo markers. We discovered that GFPs of diverse origins can act as light-induced electron donors in photochemical reactions with various electron acceptors, including biologically relevant ones. Moreover, via green-to-red GFP photoconversion, this process can be observed in living cells without additional treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oxidant-mediated green-to-red photoconversion of EGFP in vitro.
Figure 2: Green-to-red photoconversion of GFPs in live cells.

Similar content being viewed by others

References

  1. Lippincott-Schwartz, J. & Patterson, G.H. Science 300, 87–91 (2003).

    Article  CAS  Google Scholar 

  2. Matz, M.V. et al. Nat. Biotechnol. 17, 969–973 (1999).

    Article  CAS  Google Scholar 

  3. Shagin, D.A. et al. Mol. Biol. Evol. 21, 841–850 (2004).

    Article  CAS  Google Scholar 

  4. Deheyn, D.D. et al. Biol. Bull. 213, 95–100 (2007).

    Article  CAS  Google Scholar 

  5. Verkhusha, V.V. & Lukyanov, K.A. Nat. Biotechnol. 22, 289–296 (2004).

    Article  CAS  Google Scholar 

  6. Chudakov, D.M., Lukyanov, S. & Lukyanov, K.A. Trends Biotechnol. 23, 605–613 (2005).

    Article  CAS  Google Scholar 

  7. Pakhomov, A.A. & Martynov, V.I. Chem. Biol. 15, 755–764 (2008).

    Article  CAS  Google Scholar 

  8. Lukyanov, K.A., Chudakov, D.M., Lukyanov, S. & Verkhusha, V.V. Nat. Rev. Mol. Cell Biol. 6, 885–891 (2005).

    Article  CAS  Google Scholar 

  9. Shaner, N.C., Patterson, G.H. & Davidson, M.W. J. Cell Sci. 120, 4247–4260 (2007).

    Article  CAS  Google Scholar 

  10. Elowitz, M.B., Surette, M.G., Wolf, P.E., Stock, J. & Leibler, S. Curr. Biol. 7, 809–812 (1997).

    Article  CAS  Google Scholar 

  11. Sawin, K.E. & Nurse, P. Curr. Biol. 7, R606–R607 (1997).

    Article  CAS  Google Scholar 

  12. Takahashi, E. et al. Am. J. Physiol. Cell Physiol. 291, C781–C787 (2006).

    Article  CAS  Google Scholar 

  13. Jakobs, S., Schauss, A.C. & Hell, S.W. FEBS Lett. 554, 194–200 (2003).

    Article  CAS  Google Scholar 

  14. Gross, L.A., Baird, G.S., Hoffman, R.C., Baldridge, K.K. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 97, 11990–11995 (2000).

    Article  CAS  Google Scholar 

  15. Moore, G.T. & Pettigrew, G.W. Cytochrome c: Evolutionary, Structural and Physicochemical Aspects (Springer-Verlag, New York, 1990).

    Book  Google Scholar 

  16. Dym, O. & Eisenberg, D. Protein Sci. 10, 1712–1728 (2001).

    Article  CAS  Google Scholar 

  17. Kiseleva, Iu.V., Mishin, A.S., Bogdanov, A.M., Labas, Iu.A. & Luk'ianov, K.A. Bioorg. Khim. 34, 711–715 (2008).

    PubMed  Google Scholar 

  18. Go, Y.M. & Jones, D.P. Biochim. Biophys. Acta 1780, 1273–1290 (2008).

    Article  CAS  Google Scholar 

  19. Labas, Y.A. et al. Proc. Natl. Acad. Sci. USA 99, 4256–4261 (2002).

    Article  CAS  Google Scholar 

  20. Remington, S.J. et al. Biochemistry 44, 202–212 (2005).

    Article  CAS  Google Scholar 

  21. Pletneva, N. et al. Acta Crystallogr. D Biol. Crystallogr. 62, 527–532 (2006).

    Article  Google Scholar 

  22. Krasnovsky, A.A. Dokl. Akad. Nauk SSSR 60, 421–424 (1948).

    Google Scholar 

  23. Krasnovsky, A.A. Annu. Rev. Plant Physiol. 11, 363–410 (1960).

    Article  Google Scholar 

  24. Massey, V. & Palmer, G.H. Biochemistry 5, 3181–3189 (1966).

    Article  CAS  Google Scholar 

  25. Alieva, N.O. et al. PLoS One 3, e2680 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MCB program of the Russian Academy of Sciences, the Russian Federal Agency for Science and Innovations (grant 02.513.12.3013), Howard Hughes Medical Institute (grant 55005618), the European Commission Sixth Framework Programme (LSHG-CT-2003-503259), the Russian Foundation for Basic Research (grants 07-04-12189-ofi and 09-04-00356-a), and the program “State Support of the Leading Scientific Schools” (NS-2395.2008.4). D.M.C. and K.A.L. are supported by the Russian Science Support Foundation and by grants from the president of the Russian Federation (MK-6119.2008.4 and MD-5815.2008.4). V.V.V. was supported by grant GM073913 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin A Lukyanov.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1 and 2, and Supplementary Methods (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdanov, A., Mishin, A., Yampolsky, I. et al. Green fluorescent proteins are light-induced electron donors. Nat Chem Biol 5, 459–461 (2009). https://doi.org/10.1038/nchembio.174

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.174

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing