Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine


Albicidin is a potent DNA gyrase inhibitor produced by the sugarcane pathogenic bacterium Xanthomonas albilineans. Here we report the elucidation of the hitherto unknown structure of albicidin, revealing a unique polyaromatic oligopeptide mainly composed of p-aminobenzoic acids. In vitro studies provide further insights into the biosynthetic machinery of albicidin. These findings will enable structural investigations on the inhibition mechanism of albicidin and its assessment as a highly effective antibacterial drug.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Structural characterization of albicidin.
Figure 2: Model of albicidin biosynthesis.


  1. Young, J.M., Park, D.C., Shearman, H.M. & Fargier, E. Syst. Appl. Microbiol. 31, 366–377 (2008).

    CAS  Article  Google Scholar 

  2. Royer, M. et al. Mol. Plant Microbe Interact. 17, 414–427 (2004).

    CAS  Article  Google Scholar 

  3. Dal-Bianco, M. et al. Curr. Opin. Biotechnol. 23, 265–270 (2012).

    CAS  Article  Google Scholar 

  4. Birch, R.G. & Patil, S.S. Phytopathology 73, 1368–1374 (1983).

    Article  Google Scholar 

  5. Birch, R.G. & Patil, S.S. Physiol. Mol. Plant Pathol. 30, 207–214 (1987).

    CAS  Article  Google Scholar 

  6. Birch, R.G. & Patil, S.S. Physiol. Mol. Plant Pathol. 30, 199–206 (1987).

    CAS  Article  Google Scholar 

  7. Birch, R.G. & Patil, S.S. Antibiotic and process for the production thereof. US patent 4,525,354 (1985).

  8. Hashimi, S.M., Wall, M.K., Smith, A.B., Maxwell, A. & Birch, R.G. Antimicrob. Agents Chemother. 51, 181–187 (2007).

    CAS  Article  Google Scholar 

  9. Corbett, K.D. & Berger, J.M. Annu. Rev. Biophys. Biomol. Struct. 33, 95–118 (2004).

    CAS  Article  Google Scholar 

  10. Maxwell, A. & Lawson, D.M. Curr. Top. Med. Chem. 3, 283–303 (2003).

    CAS  Article  Google Scholar 

  11. Vivien, E. et al. Antimicrob. Agents Chemother. 51, 1549–1552 (2007).

    CAS  Article  Google Scholar 

  12. Dosselaere, F. & Vanderleyden, J. Crit. Rev. Microbiol. 27, 75–131 (2001).

    CAS  Article  Google Scholar 

  13. Stachelhaus, T. & Marahiel, M.A. FEMS Microbiol. Lett. 125, 3–14 (1995).

    CAS  Article  Google Scholar 

  14. Du, L., Sanchez, C., Chen, M., Edwards, D.J. & Shen, B. Chem. Biol. 7, 623–642 (2000).

    CAS  Article  Google Scholar 

  15. Aravind, L., Anantharaman, V. & Koonin, E.V. Proteins 48, 1–14 (2002).

    CAS  Article  Google Scholar 

  16. Huang, G., Zhang, L. & Birch, R.G. Gene 255, 327–333 (2000).

    CAS  Article  Google Scholar 

  17. Koglin, A. et al. Science 312, 273–276 (2006).

    CAS  Article  Google Scholar 

  18. Tanovic, A., Samel, S.A., Essen, L.O. & Marahiel, M.A. Science 321, 659–663 (2008).

    CAS  Article  Google Scholar 

  19. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. Chem. Biol. 6, 493–505 (1999).

    CAS  Article  Google Scholar 

  20. Birch, R.G. & Patil, S.S. J. Gen. Microbiol. 131, 1069–1075 (1985).

    CAS  PubMed  Google Scholar 

  21. Zhang, L., Xu, J. & Birch, R.G. J. Appl. Microbiol. 85, 1023–1028 (1998).

    CAS  Article  Google Scholar 

  22. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. J. Mol. Biol. 215, 403–410 (1990).

    CAS  Article  Google Scholar 

  23. McWilliam, H. et al. Nucleic Acids Res. 41, W597–W600 (2013).

    Article  Google Scholar 

  24. Bachmann, B.O. & Ravel, J. Methods Enzymol. 458, 181–217 (2009).

    CAS  Article  Google Scholar 

  25. Zhang, Y. BMC Bioinformatics 9, 40 (2008).

    Article  Google Scholar 

  26. Bogomolovas, J., Simon, B., Sattler, M. & Stier, G. Protein Expr. Purif. 64, 16–23 (2009).

    CAS  Article  Google Scholar 

Download references


This work was supported by a grant from the Deutsche Forschungsgemeinschaft (DFG SU239/11-1; SU 18-1), by the Cluster of Excellence 'Unifying Concepts in Catalysis (UniCat)' (DFG) and by a grant from the Agence Nationale de la Recherche (ANR-09-BLAN-0413-01).

Author information

Authors and Affiliations



S.C., A.P., S.D., M.M., J.N., I.P., M.H., P.R. and M.R. performed the cultivation and isolation of albicidin. A.P., D.P., V.S., S.K. and A.M. performed the structural elucidation of albicidin. D.P., S.U., A.M. and M.R. performed the bioinformatic analysis of the biosynthesis genes. D.P., S.U. and M.H. produced the proteins and performed the in vitro assays. J.K. synthetized the substrates for the in vitro assay. S.C., A.P., D.P., A.M., M.R. and R.D.S. designed the study and analyzed the data. S.C., A.P., D.P., L.V., A.M., M.R. and R.D.S. wrote the manuscript.

Corresponding authors

Correspondence to Monique Royer or Roderich D Süssmuth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–12. (PDF 2134 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cociancich, S., Pesic, A., Petras, D. et al. The gyrase inhibitor albicidin consists of p-aminobenzoic acids and cyanoalanine. Nat Chem Biol 11, 195–197 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing