Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo biosynthesis of terminal alkyne-labeled natural products

Abstract

The terminal alkyne is a functionality widely used in organic synthesis, pharmaceutical science, material science and bioorthogonal chemistry. This functionality is also found in acetylenic natural products, but the underlying biosynthetic pathways for its formation are not well understood. Here we report the characterization of what is to our knowledge the first carrier protein–dependent terminal alkyne biosynthetic machinery in microbes. We further demonstrate that this enzymatic machinery can be exploited for the in situ generation and incorporation of terminal alkynes into two natural product scaffolds in Escherichia coli. These results highlight the prospect for tagging major classes of natural products, including polyketides and polyketide/nonribosomal peptide hybrids, using biosynthetic pathway engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Biochemical characterization of JamA, JamB and JamC.
Figure 3: Substrate specificity of JamB.
Figure 4: Biosynthesis of 3 through starter unit engineering.
Figure 5: Biosynthesis of 5 through extender unit engineering.

Similar content being viewed by others

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Referenced accessions

GenBank/EMBL/DDBJ

References

  1. Bindman, N.A. & van der Donk, W.A. A general method for fluorescent labeling of the N-termini of lanthipeptides and its application to visualize their cellular localization. J. Am. Chem. Soc. 135, 10362–10371 (2013).

    Article  CAS  Google Scholar 

  2. Sin, N., Meng, L., Auth, H. & Crews, C.M. Eponemycin analogues: syntheses and use as probes of angiogenesis. Bioorg. Med. Chem. 6, 1209–1217 (1998).

    Article  CAS  Google Scholar 

  3. Harvey, C.J., Puglisi, J.D., Pande, V.S., Cane, D.E. & Khosla, C. Precursor directed biosynthesis of an orthogonally functional erythromycin analogue: selectivity in the ribosome macrolide binding pocket. J. Am. Chem. Soc. 134, 12259–12265 (2012).

    Article  CAS  Google Scholar 

  4. Ross, C., Scherlach, K., Kloss, F. & Hertweck, C. The molecular basis of conjugated polyyne biosynthesis in phytopathogenic bacteria. Angew. Chem. Int. Edn Engl. 53, 7794–7798 (2014).

    Article  CAS  Google Scholar 

  5. Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical-biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article  CAS  Google Scholar 

  6. Sandy, M., Zhu, X., Rui, Z. & Zhang, W. Characterization of AntB, a promiscuous acyltransferase involved in antimycin biosynthesis. Org. Lett. 15, 3396–3399 (2013).

    Article  CAS  Google Scholar 

  7. Dupuis, S.N. et al. Synthetic diversification of natural products: semi-synthesis and evaluation of triazole jadomycins. Chem. Sci. 3, 1640–1644 (2012).

    Article  CAS  Google Scholar 

  8. Yan, Y. et al. Multiplexing of combinatorial chemistry in antimycin biosynthesis: expansion of molecular diversity and utility. Angew. Chem. Int. Edn Engl. 52, 12308–12312 (2013).

    Article  CAS  Google Scholar 

  9. Martín, J.F., Casqueiro, J. & Liras, P. Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. Curr. Opin. Microbiol. 8, 282–293 (2005).

    Article  Google Scholar 

  10. Minto, R.E. & Blacklock, B.J. Biosynthesis and function of polyacetylenes and allied natural products. Prog. Lipid Res. 47, 233–306 (2008).

    Article  CAS  Google Scholar 

  11. Yamaguchi, M., Park, H.J., Ishizuka, S., Omata, K. & Hirama, M. Chemistry and antimicrobial activity of caryoynencins analogs. J. Med. Chem. 38, 5015–5022 (1995).

    Article  CAS  Google Scholar 

  12. Shanklin, J., Guy, J.E., Mishra, G. & Lindqvist, Y. Desaturases: emerging models for understanding functional diversification of diiron-containing enzymes. J. Biol. Chem. 284, 18559–18563 (2009).

    Article  CAS  Google Scholar 

  13. Gagné, S.J., Reed, D.W., Gray, G.R. & Covello, P.S. Structural control of chemoselectivity, stereoselectivity, and substrate specificity in membrane-bound fatty acid acetylenases and desaturases. Biochemistry 48, 12298–12304 (2009).

    Article  Google Scholar 

  14. Haritos, V.S. et al. The convergent evolution of defensive polyacetylenic fatty acid biosynthesis genes in soldier beetles. Nat. Commun. 3, 1150 (2012).

    Article  Google Scholar 

  15. Blacklock, B.J., Scheffler, B.E., Shepard, M.R., Jayasuriya, N. & Minto, R.E. Functional diversity in fungal fatty acid synthesis: the first acetylenase from the Pacific golden chanterelle, Cantharellus formosus. J. Biol. Chem. 285, 28442–28449 (2010).

    Article  CAS  Google Scholar 

  16. Fritsche, K. et al. Biosynthetic genes and activity spectrum of antifungal polyynes from Collimonas fungivorans Ter331. Environ. Microbiol. 16, 1334–1345 (2014).

    Article  CAS  Google Scholar 

  17. Lee, M. et al. Identification of non-heme diiron proteins that catalyze triple bond and epoxy group formation. Science 280, 915–918 (1998).

    Article  CAS  Google Scholar 

  18. Edwards, D.J. et al. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem. Biol. 11, 817–833 (2004).

    Article  CAS  Google Scholar 

  19. Jones, A.C. et al. Genomic insights into the physiology and ecology of the marine filamentous cyanobacterium Lyngbya majuscula. Proc. Natl. Acad. Sci. USA 108, 8815–8820 (2011).

    Article  CAS  Google Scholar 

  20. Dorrestein, P.C. et al. Activity screening of carrier domains within nonribosomal peptide synthetases using complex substrate mixtures and large molecule mass spectrometry. Biochemistry 45, 1537–1546 (2006).

    Article  CAS  Google Scholar 

  21. Shanklin, J. & Cahoon, E.B. Desaturation and related modifications of fatty acids. Annu. Rev. Plant Physiol. 49, 611–641 (1998).

    Article  CAS  Google Scholar 

  22. Zhang, W., Bolla, M.L., Kahne, D. & Walsh, C.T. A three enzyme pathway for 2-amino-3-hydroxycyclopent-2-enone formation and incorporation in natural product biosynthesis. J. Am. Chem. Soc. 132, 6402–6411 (2010).

    Article  CAS  Google Scholar 

  23. Wada, H., Avelange-Macherel, M.H. & Murata, N. The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for Δ12 desaturase. J. Bacteriol. 175, 6056–6058 (1993).

    Article  CAS  Google Scholar 

  24. Nakamura, M.T. & Nara, T.Y. Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases. Annu. Rev. Nutr. 24, 345–376 (2004).

    Article  CAS  Google Scholar 

  25. Wada, H., Schmidt, H., Heinz, E. & Murata, N. In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J. Bacteriol. 175, 544–547 (1993).

    Article  CAS  Google Scholar 

  26. Thompson, G.A. et al. Primary structures of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc. Natl. Acad. Sci. USA 88, 2578–2582 (1991).

    Article  CAS  Google Scholar 

  27. Shanklin, J. & Somerville, C. Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc. Natl. Acad. Sci. USA 88, 2510–2514 (1991).

    Article  CAS  Google Scholar 

  28. Yin, J., Lin, A.J., Golan, D.E. & Walsh, C.T. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Nat. Protoc. 1, 280–285 (2006).

    Article  CAS  Google Scholar 

  29. Morita, H. et al. Synthesis of unnatural alkaloid scaffolds by exploiting plant polyketide synthase. Proc. Natl. Acad. Sci. USA 108, 13504–13509 (2011).

    Article  CAS  Google Scholar 

  30. Pfeifer, B.A., Admiraal, S.J., Gramajo, H., Cane, D.E. & Khosla, C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291, 1790–1792 (2001).

    Article  CAS  Google Scholar 

  31. Zhang, W., Li, Y. & Tang, Y. Engineered biosynthesis of bacterial aromatic polyketides in Escherichia coli. Proc. Natl. Acad. Sci. USA 105, 20683–20688 (2008).

    Article  CAS  Google Scholar 

  32. Shimo, T., Matsuzaki, S. & Somekawa, K. Intramolecular photoreactions of 6-(ω-alkenyl)-4-methoxy-2-pyrones. J. Heterocycl. Chem. 31, 387–390 (1994).

    Article  CAS  Google Scholar 

  33. Wilson, M.C. & Moore, B.S. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat. Prod. Rep. 29, 72–86 (2012).

    Article  CAS  Google Scholar 

  34. Sandy, M., Rui, Z., Gallagher, J. & Zhang, W. Enzymatic synthesis of dilactone scaffold of antimycins. ACS Chem. Biol. 7, 1956–1961 (2012).

    Article  CAS  Google Scholar 

  35. Pyke, K.A. Plastid division and development. Plant Cell 11, 549–556 (1999).

    Article  CAS  Google Scholar 

  36. Shanklin, J., Whittle, E. & Fox, B.G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33, 12787–12794 (1994).

    Article  CAS  Google Scholar 

  37. Shieh, P., Hangauer, M.J. & Bertozzi, C.R. Fluorogenic azidofluoresceins for biological imaging. J. Am. Chem. Soc. 134, 17428–17431 (2012).

    Article  CAS  Google Scholar 

  38. Shieh, P., Siegrist, M.S., Cullen, A.J. & Bertozzi, C.R. Imaging bacterial peptidoglycan with near-infrared fluorogenic azide probes. Proc. Natl. Acad. Sci. USA 111, 5456–5461 (2014).

    Article  CAS  Google Scholar 

  39. Grammel, M. & Hang, H.C. Chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475–484 (2013).

    Article  CAS  Google Scholar 

  40. Neef, A.B. & Luedtke, N.W. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc. Natl. Acad. Sci. USA 108, 20404–20409 (2011).

    Article  CAS  Google Scholar 

  41. Torella, J.P. et al. Tailored fatty acid synthesis via dynamic control of fatty acid elongation. Proc. Natl. Acad. Sci. USA 110, 11290–11295 (2013).

    Article  CAS  Google Scholar 

  42. Liu, J., Zhu, X., Seipke, R.F. & Zhang, W. Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli. ACS Synth. Biol. 10.1021/sb5003136 (2014).

Download references

Acknowledgements

This research was financially supported by the Pew Scholars Program and University of California Cancer Research Coordinating Committee funds. We thank I. Abe (University of Tokyo) for providing hspks1, S. Bauer (University of California–Berkeley) for assisting with LC/HRMS analysis, J. Pelton (University of California–Berkeley) for helping with NMR spectroscopic analysis, J. Chung (University of California–Berkeley) for helping with compound purification and L. Zhang (University of California–Berkeley) for providing scACP.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. designed the experiments, performed all experiments, analyzed the data and wrote the manuscript. J.L. constructed plasmids for antimycin production in E. coli. W.Z. designed the experiments, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Wenjun Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–23. (PDF 4454 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Liu, J. & Zhang, W. De novo biosynthesis of terminal alkyne-labeled natural products. Nat Chem Biol 11, 115–120 (2015). https://doi.org/10.1038/nchembio.1718

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1718

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing