Targeting mitochondria metabolism for cancer therapy

Abstract

Mitochondria have a well-recognized role in the production of ATP and the intermediates needed for macromolecule biosynthesis, such as nucleotides. Mitochondria also participate in the activation of signaling pathways. Overall, accumulating evidence now suggests that mitochondrial bioenergetics, biosynthesis and signaling are required for tumorigenesis. Thus, emerging studies have begun to demonstrate that mitochondrial metabolism is potentially a fruitful arena for cancer therapy. In this Perspective, we highlight recent developments in targeting mitochondrial metabolism for the treatment of cancer.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mitochondria function as bioenergetic, biosynthetic and signaling organelles.
Figure 2: Targeting mitochondrial bioenergetic capacity.
Figure 3: Targeting mitochondrial biosynthetic production.
Figure 4: Targeting mitochondrial redox signaling and balance.
Figure 5: Targeting mitochondrial metabolism.

References

  1. 1

    Bonnet, S. et al. A mitochondria-K channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11, 37–51 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Warburg, O. On the origin of cancer cells. Science 123, 309–314 (1956)

    CAS  Article  Google Scholar 

  3. 3

    Ames, B.N., Shigenaga, M.K. & Hagen, T.M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915–7922 (1993)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Koppenol, W.H., Bounds, P.L. & Dang, C.V. Otto Warburg's contributions to current concepts of cancer metabolism. Nat. Rev. Cancer 11, 325–337 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Cross, C.E. et al. Oxygen radicals and human disease. Ann. Intern. Med. 107, 526–545 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Weinhouse, S. On respiratory impairment in cancer cells. Science 124, 267–269 (1956)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Weinhouse, S., Millington, R.H. & Wenner, C.E. Metabolism of neoplastic tissue. I. The oxidation of carbohydrate and fatty acids in transplanted tumors. Cancer Res. 11, 845–850 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Wenner, C.E., Spirtes, M.A. & Weinhouse, S. Metabolism of neoplastic tissue. II. A survey of enzymes of the citric acid cycle in transplanted tumors. Cancer Res. 12, 44–49 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Weinhouse, S. Studies on the fate of isotopically labeled metabolites in the oxidative metabolism of tumors. Cancer Res. 11, 585–591 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Weinberg, F. et al. Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 107, 8788–8793 (2010) This report provides genetic and pharmacologic evidence that mitochondrial metabolism and ROS are required for tumor growth.

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Fogal, V. et al. Mitochondrial p32 protein is a critical regulator of tumor metabolism via maintenance of oxidative phosphorylation. Mol. Cell. Biol. 30, 1303–1318 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Guo, J.Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011) This report provides evidence that autophagy sustains mitochondrial metabolism that is essential for tumor growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Wellen, K.E. et al. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324, 1076–1080 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Kaelin, W.G. Jr. & McKnight, S.L. Influence of metabolism on epigenetics and disease. Cell 153, 56–69 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Sena, L.A. & Chandel, N.S. Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48, 158–167 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16

    Pagliarini, D.J. et al. Involvement of a mitochondrial phosphatase in the regulation of ATP production and insulin secretion in pancreatic β cells. Mol. Cell 19, 197–207 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Acin-Perez, R., Gatti, D.L., Bai, Y. & Manfredi, G. Protein phosphorylation and prevention of cytochrome oxidase inhibition by ATP: coupled mechanisms of energy metabolism regulation. Cell Metab. 13, 712–719 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Huang, L.J. et al. NH2-terminal targeting motifs direct dual specificity A-kinase-anchoring protein 1 (D-AKAP1) to either mitochondria or endoplasmic reticulum. J. Cell Biol. 145, 951–959 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Seth, R.B., Sun, L., Ea, C.K. & Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kB and IRF 3. Cell 122, 669–682 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Chandel, N.S. Mitochondria as signaling organelles. BMC Biol. 12, 34 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Ward, P.S. & Thompson, C.B. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer Cell 21, 297–308 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    Lunt, S.Y. & Vander Heiden, M.G. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 27, 441–464 (2011)

    Article  CAS  Google Scholar 

  23. 23

    Dang, C.V. Links between metabolism and cancer. Genes Dev. 26, 877–890 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Hatzivassiliou, G. et al. ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8, 311–321 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    DeBerardinis, R.J. & Cheng, T. Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29, 313–324 (2010)

    Article  CAS  Google Scholar 

  26. 26

    Schieber, M. & Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453–R462 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gorrini, C., Harris, I.S. & Mak, T.W. Modulation of oxidative stress as an anticancer strategy. Nat. Rev. Drug Discov. 12, 931–947 (2013) A superb review on targeting ROS for cancer therapy.

    Article  CAS  Google Scholar 

  28. 28

    Fan, J. et al. Quantitative flux analysis reveals folate-dependent NADPH production. Nature 510, 298–302 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Lewis, C.A. et al. Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol. Cell 55, 253–263 (2014) This paper reports the importance of mitochondrial one-carbon metabolism in generating mitochondrial NADPH.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Yang, M., Soga, T. & Pollard, P.J. Oncometabolites: linking altered metabolism with cancer. J. Clin. Invest. 123, 3652–3658 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31

    Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Mullen, A.R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2012).

    Article  CAS  Google Scholar 

  33. 33

    Wise, D.R. et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA 108, 19611–19616 (2011)

    Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Metallo, C.M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012).

    Article  CAS  Google Scholar 

  35. 35

    Sullivan, L.B. et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51, 236–248 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Guzy, R.D., Sharma, B., Bell, E., Chandel, N. & Schumacker, P. Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species–dependent hypoxia-inducible factor activation and tumorigenesis. Mol. Cell. Biol. 28, 718–731 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Woo, D.K. et al. Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. Am. J. Pathol. 180, 24–31 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Petros, J.A. et al. mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. USA 102, 719–724 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Ishikawa, K. et al. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320, 661–664 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Porporato, P.E. et al. A mitochondrial switch promotes tumor metastasis. Cell Rep. 8, 754–766 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Wallace, D.C. Mitochondria and cancer. Nat. Rev. Cancer 12, 685–698 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Zu, X.L. & Guppy, M. Cancer metabolism: facts, fantasy, and fiction. Biochem. Biophys. Res. Commun. 313, 459–465 (2004) A report that highlights that most cancer cells generate the majority of their ATP from mitochondria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Jain, R.K., Munn, L.L. & Fukumura, D. Dissecting tumour pathophysiology using intravital microscopy. Nat. Rev. Cancer 2, 266–276 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Gatenby, R.A. & Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004)

    Article  CAS  Google Scholar 

  46. 46

    Rumsey, W.L., Schlosser, C., Nuutinen, E.M., Robiolio, M. & Wilson, D.F. Cellular energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat. J. Biol. Chem. 265, 15392–15402 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Caro, P. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547–560 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Vazquez, F. et al. PGC1a expression defines a subset of human melanoma tumors with increased mitochondrial capacity and resistance to oxidative stress. Cancer Cell 23, 287–301 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Haq, R. et al. Oncogenic BRAF regulates oxidative metabolism via PGC1a and MITF. Cancer Cell 23, 302–315 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Engelman, J.A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nat. Med. 14, 1351–1356 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Bailey, C.J. & Turner, R.C. Metformin. N. Engl. J. Med. 334, 574–579 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Evans, J.M., Donnelly, L.A., Emslie-Smith, A.M., Alessi, D.R. & Morris, A.D. Metformin and reduced risk of cancer in diabetic patients. Br. Med. J. 330, 1304–1305 (2005) A seminal study that was the first to report a potential association of metformin use with reduced cancer incidence.

    Article  Google Scholar 

  53. 53

    Dowling, R.J., Niraula, S., Stambolic, V. & Goodwin, P.J. Metformin in cancer: translational challenges. J. Mol. Endocrinol. 48, R31–R43 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Memmott, R.M. et al. Metformin prevents tobacco carcinogen–induced lung tumorigenesis. Cancer Prev. Res. (Phila.) 3, 1066–1076 (2010)

    Article  CAS  Google Scholar 

  56. 56

    Tomimoto, A. et al. Metformin suppresses intestinal polyp growth in ApcMin/+ mice. Cancer Sci. 99, 2136–2141 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Pollak, M. Overcoming drug development bottlenecks with repurposing: repurposing biguanides to target energy metabolism for cancer treatment. Nat. Med. 20, 591–593 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Birsoy, K., Sabatini, D.M. & Possemato, R. Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat. Med. 18, 1022–1023 (2012)

    Article  CAS  Google Scholar 

  59. 59

    Pollak, M. The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat. Rev. Cancer 12, 159–169 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    El-Mir, M.Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Owen, M.R., Doran, E. & Halestrap, A.P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Bridges, H.R., Jones, A.J., Pollak, M.N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487 (2014) A detailed study of how metformin and related biguanides inhibit mitochondrial oxidative phosphorylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Wheaton, W.W. et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. eLife 3, e02242 (2014) A report that indicates that metformin's anti-cancer effects in vivo are due to complex I inhibition.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64

    Fendt, S.M. et al. Metformin decreases glucose oxidation and increases the dependency of prostate cancer cells on reductive glutamine metabolism. Cancer Res. 73, 4429–4438 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Janzer, A. et al. Metformin and phenformin deplete tricarboxylic acid cycle and glycolytic intermediates during cell transformation and NTPs in cancer stem cells. Proc. Natl. Acad. Sci. USA 111, 10574–10579 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Hardie, D.G. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes 62, 2164–2172 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Storozhuk, Y. et al. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 108, 2021–2032 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Emami Riedmaier, A., Fisel, P., Nies, A.T., Schaeffeler, E. & Schwab, M. Metformin and cancer: from the old medicine cabinet to pharmacological pitfalls and prospects. Trends Pharmacol. Sci. 34, 126–135 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Appleyard, M.V. et al. Phenformin as prophylaxis and therapy in breast cancer xenografts. Br. J. Cancer 106, 1117–1122 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Birsoy, K. et al. Metabolic determinants of cancer cell sensitivity to glucose limitation and biguanides. Nature 508, 108–112 (2014) A study demonstrating that sensitivity to biguanides increases in cancer cells that harbor mutations in complex I genes or have impaired glucose utilization.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Shackelford, D.B. et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143–158 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Yuan, P. et al. Phenformin enhances the therapeutic benefit of BRAFV600E inhibition in melanoma. Proc. Natl. Acad. Sci. USA 110, 18226–18231 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  73. 73

    Zhang, X. et al. Induction of mitochondrial dysfunction as a strategy for targeting tumour cells in metabolically compromised microenvironments. Nat Commun. 5, 3295 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Škrtić, M. et al. Inhibition of mitochondrial translation as a therapeutic strategy for human acute myeloid leukemia. Cancer Cell 20, 674–688 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Chae, Y.C. et al. Control of tumor bioenergetics and survival stress signaling by mitochondrial HSP90s. Cancer Cell 22, 331–344 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Hensley, C.T., Wasti, A.T. & DeBerardinis, R.J. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J. Clin. Invest. 123, 3678–3684 (2013) An excellent review of glutamine metabolism and its potential as a therapeutic target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Wise, D.R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl. Acad. Sci. USA 105, 18782–18787 (2008)

    Article  Google Scholar 

  78. 78

    Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Wang, J.B. et al. Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18, 207–219 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Le, A. et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 15, 110–121 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Thornburg, J.M. et al. Targeting aspartate aminotransferase in breast cancer. Breast Cancer Res. 10, R84 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Qing, G. et al. ATF4 Regulates MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 22, 631–644 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Strohecker, A.M. et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov. 3, 1272–1285 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Bjelakovic, G. & Gluud, C. Surviving antioxidant supplements. J. Natl. Cancer Inst. 99, 742–743 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  86. 86

    Sayin, V.I. et al. Antioxidants accelerate lung cancer progression in mice. Sci. Transl. Med. 6, 221ra15 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    The α-Tocopherol β-Carotene Cancer Prevention Study Group. The effect of vitamin-E and b-carotene on the incidence of lung-cancer and other cancers in male smokers. N. Engl. J. Med. 330, 1029–1035 (1994)

  88. 88

    Cheng, G. et al. Mitochondria-targeted drugs synergize with 2-deoxyglucose to trigger breast cancer cell death. Cancer Res. 72, 2634–2644 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Nazarewicz, R.R. et al. Does scavenging of mitochondrial superoxide attenuate cancer prosurvival signaling pathways? Antioxid. Redox Signal. 19, 344–349 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Snow, B.J. et al. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25, 1670–1674 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  91. 91

    DeNicola, G.M. et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475, 106–109 (2011). The paper identifies mitochondrial one-carbon metabolic enzyme MTHFD2 as a potential cancer therapeutic target across multiple tumors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Locasale, J.W. Serine, glycine and one-carbon units: cancer metabolism in full circle. Nat. Rev. Cancer 13, 572–583 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Ye, J. et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. (2014).

  94. 94

    Nilsson, R. et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 5, 3128 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Glasauer, A., Sena, L.A., Diebold, L.P., Mazar, A.P. & Chandel, N.S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Trachootham, D. et al. Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 10, 241–252 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Martin-Rufián, M. et al. Both GLS silencing and GLS2 overexpression synergize with oxidative stress against proliferation of glioma cells. J. Mol. Med. (Berl.) 92, 277–290 (2014)

    Article  CAS  Google Scholar 

  98. 98

    Raj, L. et al. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231–234 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. 99

    Fesik, S.W. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 5, 876–885 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Murphy, M.P. & Smith, R.A. Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu. Rev. Pharmacol. Toxicol. 47, 629–656 (2007) An excellent review that details mechanisms by which small molecules preferentially can be delivered into mitochondrial matrix.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Marrache, S., Pathak, R.K. & Dhar, S. Detouring of cisplatin to access mitochondrial genome for overcoming resistance. Proc. Natl. Acad. Sci. USA 111, 10444–10449 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported US National Institutes of Health grants R01CA123067 to N.S.C. and 5T32HL076139-10 to S.E.W. We apologize to all investigators whose work could not be cited due to reference limitations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Navdeep S Chandel.

Ethics declarations

Competing interests

N.S.C. has previously consulted for Agios, Astellas Pharma Inc. and Bayer Pharma AG on this topic.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Weinberg, S., Chandel, N. Targeting mitochondria metabolism for cancer therapy. Nat Chem Biol 11, 9–15 (2015). https://doi.org/10.1038/nchembio.1712

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing