Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

FTIR analysis of GPCR activation using azido probes

Abstract

We demonstrate the site-directed incorporation of an IR-active amino acid, p-azido-L-phenylalanine (azidoF, 1), into the G protein–coupled receptor rhodopsin using amber codon suppression technology. The antisymmetric stretch vibration of the azido group absorbs at 2,100 cm−1 in a clear spectral window and is sensitive to its electrostatic environment. We used FTIR difference spectroscopy to monitor the azido probe and show that the electrostatic environments of specific interhelical networks change during receptor activation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Non-natural amino acid mutagenesis.
Figure 2: FTIR spectroscopy on azidoF rhodopsin mutants.
Figure 3: Structural models of rhodopsin activation.

References

  1. 1

    Pierce, K.L ., Premont, R.T . & Lefkowitz, R.J . Nat. Rev. Mol. Cell Biol. 3, 639–650 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Huber, T., Menon, S. & Sakmar, T.P. Biochemistry 47, 11013–11023 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Kobilka, B. & Schertler, G.F.X. Trends Pharmacol. Sci. 29, 79–83 (2008).

    CAS  Article  Google Scholar 

  4. 4

    Hanson, M.A. & Stevens, R.C. Structure 17, 8–14 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Mahalingam, M., Martinez-Mayorga, K., Brown, M.F. & Vogel, R. Proc. Natl. Acad. Sci. USA 105, 17795–17800 (2008).

    CAS  Article  Google Scholar 

  6. 6

    Vogel, R. et al. J. Mol. Biol. 380, 648–655 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Noren, C.J., Anthonycahill, S.J., Griffith, M.C. & Schultz, P.G. Science 244, 182–188 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Science 292, 498–500 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Sakamoto, K. et al. Nucleic Acids Res. 30, 4692–4699 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Schultz, K.C. et al. J. Am. Chem. Soc. 128, 13984–13985 (2006).

    CAS  Article  Google Scholar 

  11. 11

    Ohno, S. et al. J. Biochem 141, 335–343 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Liu, W.S., Brock, A., Chen, S., Chen, S.B. & Schultz, P.G. Nat. Methods 4, 239–244 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Ye, S.X. et al. J. Biol. Chem 283, 1525–1533 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Silverman, L.N., Pitzer, M.E., Ankomah, P.O., Boxer, S.G. & Fenlon, E.E. J. Phys. Chem. B 111, 11611–11613 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Suydam, I.T., Snow, C.D., Pande, V.S. & Boxer, S.G. Science 313, 200–204 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Chin, J.W. et al. Science 301, 964–967 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Hubbell, W.L., Altenbach, C., Hubbell, C.M. & Khorana, H.G. Adv. Protein Chem. 63, 243–290 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Li, J., Edwards, P.C., Burghammer, M., Villa, C. & Schertler, G.F.X. J. Mol. Biol. 343, 1409–1438 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Park, J.H., Scheerer, P., Hofmann, K.P., Choe, H.W. & Ernst, O.P. Nature 454, 183–187 (2008).

    CAS  Article  Google Scholar 

  20. 20

    Huber, T., Botelho, A.V., Beyer, K. & Brown, M.F. Biophys. J. 86, 2078–2100 (2004).

    CAS  Article  Google Scholar 

  21. 21

    Dunham, T.D. & Farrens, D.L. J. Biol. Chem. 274, 1683–1690 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Farrens, D.L., Altenbach, C., Yang, K., Hubbell, W.L. & Khorana, H.G. Science 274, 768–770 (1996).

    CAS  Article  Google Scholar 

  23. 23

    Patel, A.B. et al. Proc. Natl. Acad. Sci. USA 101, 10048–10053 (2004).

    CAS  Article  Google Scholar 

  24. 24

    Kobilka, B.K. & Deupi, X. Trends Pharmacol. Sci. 28, 397–406 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Scheerer, P. et al. Nature 455, 497–502 (2008).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank S. Banerjee, T. Haines, U.L. RajBhandary, C. Köhrer and M.S. Sagredo for invaluable discussions. We are also grateful to the Proteomic Resource Center at The Rockefeller University for providing technical resources. Financial support was provided by the Deutsche Forschungsgemeinschaft (grant Vo 811/4-1 to R.V.) and by a C.H. Li Memorial Scholar Award (to S.Y.).

Author information

Affiliations

Authors

Contributions

S.Y., T.H. and R.V. designed and conducted experiments, analyzed data and wrote the manuscript. T.P.S. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Thomas P Sakmar.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, and Supplementary Methods (PDF 135 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ye, S., Huber, T., Vogel, R. et al. FTIR analysis of GPCR activation using azido probes. Nat Chem Biol 5, 397–399 (2009). https://doi.org/10.1038/nchembio.167

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing