Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas

An Erratum to this article was published on 17 February 2015

This article has been updated

Abstract

We identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano–secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu+ accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu+ became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zn deficiency induces CRR1-dependent Cu hyperaccumulation.
Figure 2: Zn-limited cells also express Cu deficiency markers.
Figure 3: Cu+-sensitive CS3 staining suggests Cu accumulation in intracellular compartments.
Figure 4: Intracellular Cu is traceable to Cu-accumulating compartments.
Figure 5: Changes in abundance of electron-dense bodies and Cu redistribution upon Zn resupply.
Figure 6: Transcriptome response to Zn resupply monitored by RNA-seq analysis.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 06 January 2015

    In the version of this article initially published, the labels in Figure 4b were incorrect. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G.L. & Thornton, J.M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205–1218 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Irving, H. & Williams, R.J.P. 637. The stability of transition-metal complexes. J. Chem. Soc. 3192–3210 (1953).

  3. Dudev, T. & Lim, C. Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu. Rev. Biophys. 37, 97–116 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Waldron, K.J., Rutherford, J.C., Ford, D. & Robinson, N.J. Metalloproteins and metal sensing. Nature 460, 823–830 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Rae, T.D., Schmidt, P.J., Pufahl, R.A., Culotta, V.C. & O'Halloran, T.V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Valentine, J.S. & Gralla, E. B. Delivering copper inside yeast and human cells. Science 278, 817–818 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Tottey, S. et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Waldron, K.J. & Robinson, N.J. How do bacterial cells ensure that metalloproteins get the correct metal? Nat. Rev. Microbiol. 7, 25–35 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Boal, A.K. & Rosenzweig, A.C. Structural biology of copper trafficking. Chem. Rev. 109, 4760–4779 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Foster, A.W. & Robinson, N.J. Promiscuity and preferences of metallothioneins: the cell rules. BMC Biol. 9, 25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Merchant, S.S. et al. Between a rock and a hard place: trace element nutrition in Chlamydomonas. Biochim. Biophys. Acta 1763, 578–594 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Page, M.D., Kropat, J., Hamel, P.P. & Merchant, S.S. Two Chlamydomonas CTR copper transporters with a novel Cys-Met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell 21, 928–943 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merchant, S. & Bogorad, L. Metal ion regulated gene expression: use of a plastocyanin-less mutant of Chlamydomonas reinhardtii to study the Cu(II)-dependent expression of cytochrome c-552. EMBO J. 6, 2531–2535 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Merchant, S., Hill, K. & Howe, G. Dynamic interplay between two copper-titrating components in the transcriptional regulation of cyt c6. EMBO J. 10, 1383–1389 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kropat, J. et al. A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proc. Natl. Acad. Sci. USA 102, 18730–18735 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sommer, F. et al. The CRR1 nutritional copper sensor in Chlamydomonas contains two distinct metal-responsive domains. Plant Cell 22, 4098–4113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Malasarn, D. et al. Zinc deficiency impacts CO2 assimilation and disrupts copper homeostasis in Chlamydomonas reinhardtii. J. Biol. Chem. 288, 10672–10683 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ghosal, S. et al. Imaging and 3D elemental characterization of intact bacterial spores by high-resolution secondary ion mass spectrometry. Anal. Chem. 80, 5986–5992 (2008).

    Article  CAS  PubMed  Google Scholar 

  19. Slaveykova, V.I., Guignard, C., Eybe, T., Migeon, H.-N. & Hoffmann, L. Dynamic NanoSIMS ion imaging of unicellular freshwater algae exposed to copper. Anal. Bioanal. Chem. 393, 583–589 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Docampo, R., de Souza, W., Miranda, K., Rohloff, P. & Moreno, S.N.J. Acidocalcisomes—conserved from bacteria to man. Nat. Rev. Microbiol. 3, 251–261 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Eide, D.J. Zinc transporters and the cellular trafficking of zinc. Biochim. Biophys. Acta 1763, 711–722 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Roh, H.C., Collier, S., Guthrie, J., Robertson, J.D. & Kornfeld, K. Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab. 15, 88–99 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gudipaty, S.A., Larsen, A.S., Rensing, C. & McEvoy, M.M. Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. FEMS Microbiol. Lett. 330, 30–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Fu, Y. et al. A new structural paradigm in copper resistance in Streptococcus pneumoniae. Nat. Chem. Biol. 9, 177–183 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosen, B.P. Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 133, 689–693 (2002).

    Article  PubMed  Google Scholar 

  26. Castruita, M. et al. Systems biology approach in Chlamydomonas reveals connections between copper nutrition and multiple metabolic steps. Plant Cell 23, 1273–1292 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dodani, S.C. et al. Calcium-dependent copper redistributions in neuronal cells revealed by a fluorescent copper sensor and X-ray fluorescence microscopy. Proc. Natl. Acad. Sci. USA 108, 5980–5985 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Banci, L., Bertini, I., Cantini, F. & Ciofi-Baffoni, S. Cellular copper distribution: a mechanistic systems biology approach. Cell. Mol. Life Sci. 67, 2563–2589 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Corazza, A., Harvey, I. & Sadler, P.J. 1H, 13C-NMR and X-ray absorption studies of copper(I) glutathione complexes. Eur. J. Biochem. 236, 697–705 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Kropat, J. et al. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J. 66, 770–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lieberman, R.L. et al. Characterization of the particulate methane monooxygenase metal centers in multiple redox states by X-ray absorption spectroscopy. Inorg. Chem. 45, 8372–8381 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chauhan, S., Kline, C.D., Mayfield, M. & Blackburn, N.J. Binding of copper and silver to single-site variants of peptidylglycine monooxygenase reveals the structure and chemistry of the individual metal centers. Biochemistry 53, 1069–1080 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Aschar-Sobbi, R. et al. High sensitivity, quantitative measurements of polyphosphate using a new DAPI-based approach. J. Fluoresc. 18, 859–866 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Ruiz, F.A., Marchesini, N., Seufferheld, M., Govindjee & Docampo, R. The polyphosphate bodies of Chlamydomonas reinhardtii possess a proton-pumping pyrophosphatase and are similar to acidocalcisomes. J. Biol. Chem. 276, 46196–46203 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Rea, P.A. & Poole, R.J. Vacuolar H+-translocating pyrophosphatase. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 157–180 (1993).

    Article  CAS  Google Scholar 

  36. Bickmeyer, U., Grube, A., Klings, K.-W. & Köck, M. Ageladine A, a pyrrole-imidazole alkaloid from marine sponges, is a pH sensitive membrane permeable dye. Biochem. Biophys. Res. Commun. 373, 419–422 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, G. et al. Adaptor protein-3 (AP-3) complex mediates the biogenesis of acidocalcisomes and is essential for growth and virulence of Trypanosoma brucei. J. Biol. Chem. 286, 36619–36630 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blaby-Haas, C.E. & Merchant, S.S. The ins and outs of algal metal transport. Biochim. Biophys. Acta 1823, 1531–1552 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. La Fontaine, S. et al. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii. Eukaryot. Cell 1, 736–757 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, J.C., Hsieh, S.I., Kropat, J. & Merchant, S.S. A ferroxidase encoded by FOX1 contributes to iron assimilation under conditions of poor iron nutrition in Chlamydomonas. Eukaryot. Cell 7, 541–545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Horng, Y.-C., Cobine, P.A., Maxfield, A.B., Carr, H.S. & Winge, D.R. Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome c oxidase. J. Biol. Chem. 279, 35334–35340 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Remacle, C. et al. Knock-down of the COX3 and COX17 gene expression of cytochrome c oxidase in the unicellular green alga Chlamydomonas reinhardtii. Plant Mol. Biol. 74, 223–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Simm, C. et al. Saccharomyces cerevisiae vacuole in zinc storage and intracellular zinc distribution. Eukaryot. Cell 6, 1166–1177 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Palmiter, R.D. & Huang, L. Efflux and compartmentalization of zinc by members of the SLC30 family of solute carriers. Pflugers Arch. 447, 744–751 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. MacDiarmid, C.W., Gaither, L. & Eide, D. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J. 19, 2845–2855 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyabe, S., Izawa, S. & Inoue, Y. The Zrc1 is involved in zinc transport system between vacuole and cytosol in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 282, 79–83 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Miyayama, T., Suzuki, K.T. & Ogra, Y. Copper accumulation and compartmentalization in mouse fibroblast lacking metallothionein and copper chaperone, Atox1. Toxicol. Appl. Pharmacol. 237, 205–213 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Ralle, M. et al. Wilson disease at a single cell level: intracellular copper trafficking activates compartment-specific responses in hepatocytes. J. Biol. Chem. 285, 30875–30883 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yagisawa, F. et al. Identification of novel proteins in isolated polyphosphate vacuoles in the primitive red alga Cyanidioschyzon merolae. Plant J. 60, 882–893 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Czupryn, M., Falchuk, K.H., Stankiewicz, A. & Vallee, B.L. A Euglena gracilis endonuclease zinc endonuclease. Biochemistry 32, 1204–1211 (1993).

    Article  CAS  PubMed  Google Scholar 

  51. Harris, E.H., Stern, D.B. & Witman, G.B. The Chlamydomonas Sourcebook: Introduction to Chlamydomonas and its Laboratory Use (Academic Press, 2009).

  52. Chandra, S. in The Encyclopedia of Mass Spectrometry (eds. Gross, M. & Caprioli, R.) 469–480 (Elsevier, 2010).

  53. Merchant, S. & Bogorad, L. Regulation by copper of the expression of plastocyanin and cytochrome c552 in Chlamydomonas reinhardi. Mol. Cell. Biol. 6, 462–469 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, H.H. & Merchant, S. Degradation of plastocyanin in copper-deficient Chlamydomonas reinhardtii. Evidence for a protease-susceptible conformation of the apoprotein and regulated proteolysis. J. Biol. Chem. 270, 23504–23510 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Trapnell, C. et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511–515 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported, in part, by grants from the US National Institutes of Health (NIH; GM42143 and GM092473 to S.S.M., DK068139 to T.L.S. and GM079465 to C.J.C.), the United States Department of Energy Cooperative Agreement (DE-FC02-02ER63421 to D. Eisenberg for support of J.A.L.) and the German Academic Exchange Service DAAD (D0847579 to A.H.-H. and D1242134 to M.M.). Work at Lawrence Livermore National Laboratory (LLNL) was performed under the auspices of the US Department of Energy at LLNL under contract DE-AC52-07NA27344, with funding provided by the US Department of Energy Genomic Science Program under contract SCW1039. Portions of this research were carried out at the Stanford Synchrotron Radiation Lightsource (SSRL). SSRL is a national user facility operated by Stanford University, and the SSRL Structural Molecular Biology Program is supported by the Department of Energy–Office of Biological and Environmental Research and by the NIH–National Center for Research Resources Biomedical Technology Program. D.B. is supported by the NIH (T32HL120822), and C.J.C. is an investigator with the Howard Hughes Medical Institute. Electron microscopy was performed at the Electron Microscopy Services Center of the University of California–Los Angeles Brain Research Institute. We thank A. Aron and K.M. Ramos-Torres for their help with resynthesis and optical spectroscopy of fresh CS3 and Ctrl-CS3 for control experiments.

Author information

Authors and Affiliations

Authors

Contributions

S.S.M., A.H.-H. and M.M. designed experiments. A.H.-H., M.M. and J.K. cultured cells and supplied samples for NanoSIMS, X-ray absorption spectroscopy (XAS) and RNA-seq. M.M. and J.K. measured cellular metal contents by ICP-MS. A.H.-H. performed immunoblotting and qRT-PCR for expression analysis. A.H.-H. and M.M. imaged cells by confocal and electron microscopy and analyzed the resulting data. J.P.-R., P.K.W. and M.M. analyzed intracellular metal distribution by NanoSIMS, and D.B. and T.L.S. collected and analyzed XAS data. M.M. isolated Cu-containing compartments and did the Cu isotope labeling experiments in conjunction with LC-ICP-MS analysis. D.I.S. and M.M. performed quantitative MS of protein fractions under the supervision of J.A.L. S.D.G. prepared RNA-seq libraries and analyzed the resulting data. S.C.D., D.W.D. and J.C. synthesized the Cu+-sensitive CS3 dye (and control) under the supervision of C.J.C., M.M. and S.S.M., and A.H.-H. wrote the manuscript with input from J.C. and P.K.W.

Corresponding author

Correspondence to Sabeeha S Merchant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–20, Supplementary Tables 1–3 and Supplementary Note. (PDF 41142 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong-Hermesdorf, A., Miethke, M., Gallaher, S. et al. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 10, 1034–1042 (2014). https://doi.org/10.1038/nchembio.1662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1662

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology