Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis


Strigolactones (SLs) are a class of phytohormones and rhizosphere signaling compounds with high structural diversity. Three enzymes, carotenoid isomerase DWARF27 and carotenoid cleavage dioxygenases CCD7 and CCD8, were previously shown to convert all-trans-β-carotene to carlactone (CL), the SL precursor. However, how CL is metabolized to SLs has remained elusive. Here, by reconstituting the SL biosynthetic pathway in Nicotiana benthamiana, we show that a rice homolog of Arabidopsis MORE AXILLARY GROWTH 1 (MAX1), encodes a cytochrome P450 CYP711 subfamily member that acts as a CL oxidase to stereoselectively convert CL into ent-2′-epi-5-deoxystrigol (B-C lactone ring formation), the presumed precursor of rice SLs. A protein encoded by a second rice MAX1 homolog then catalyzes the conversion of ent-2′-epi-5-deoxystrigol to orobanchol. We therefore report that two members of CYP711 enzymes can catalyze two distinct steps in SL biosynthesis, identifying the first enzymes involved in B-C ring closure and a subsequent structural diversification step of SLs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Current knowledge of the SL biosynthesis pathway.
Figure 2: Production of CL in N. benthamiana and its conversion to ent-2′-epi-5DS by OsMAX1s.
Figure 3: Production of orobanchol in N. benthamiana and yeast microsomes expressing Os1400.
Figure 4: Predicted docking of CL and ent-2′-epi-5DS in OsMAX1s.
Figure 5: Rice SL biosynthesis from (Z)-(R)-CL.

Accession codes


NCBI Reference Sequence

Protein Data Bank


  1. 1

    Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

    CAS  Article  Google Scholar 

  2. 2

    Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Ruyter-Spira, C., Al-Babili, S., van der Krol, S. & Bouwmeester, H. The biology of strigolactones. Trends Plant Sci. 18, 72–83 (2013).

    CAS  Article  Google Scholar 

  4. 4

    Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E. & Egley, G.H. Germination of witchweed (Striga lutea lour.): isolation and properties of a potent stimulant. Science 154, 1189–1190 (1966).

    CAS  Article  Google Scholar 

  5. 5

    Akiyama, K., Matsuzaki, K. & Hayashi, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435, 824–827 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Xie, X., Yoneyama, K. & Yoneyama, K. The strigolactone story. Annu. Rev. Phytopathol. 48, 93–117 (2010).

    CAS  Article  Google Scholar 

  7. 7

    Xie, X. et al. Confirming stereochemical structures of strigolactones produced by rice and tobacco. Mol. Plant 6, 153–163 (2013).

    CAS  Article  Google Scholar 

  8. 8

    Zwanenburg, B. & Pospisil, T. Structure and activity of strigolactones: new plant hormones with a rich future. Mol. Plant 6, 38–62 (2013).

    CAS  Article  Google Scholar 

  9. 9

    Rani, K., Zwanenburg, B., Sugimoto, Y., Yoneyama, K. & Bouwmeester, H.J. Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones) for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol. Biochem. 46, 617–626 (2008).

    CAS  Article  Google Scholar 

  10. 10

    Yoneyama, K., Ruyter-Spira, C. & Bouwmeester, H. Induction of Germination (Springer-Verlag, Berlin, Heidelberg, 2013).

  11. 11

    Yoneyama, K., Xie, X. & Takeuchi, Y. Strigolactones: structures and biological activities. Pest Manag. Sci. 65, 467–470 (2009).

    CAS  Article  Google Scholar 

  12. 12

    Matusova, R. et al. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139, 920–934 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Lin, H. et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21, 1512–1525 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Alder, A. et al. The path from β-carotene to carlactone, a strigolactone-like plant hormone. Science 335, 1348–1351 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Bruno, M. et al. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7. FEBS Lett. 588, 1802–1807 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Seto, Y. et al. Carlactone is an endogenous biosynthetic precursor for strigolactones. Proc. Natl. Acad. Sci. USA 111, 1640–1645 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Kohlen, W. et al. Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in nonarbuscular mycorrhizal host Arabidopsis. Plant Physiol. 155, 974–987 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Booker, J. et al. MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev. Cell 8, 443–449 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Scaffidi, A. et al. Carlactone-independent seedling morphogenesis in Arabidopsis. Plant J. 76, 1–9 (2013).

    CAS  PubMed  Google Scholar 

  20. 20

    Challis, R.J., Hepworth, J., Mouchel, C., Waites, R. & Leyser, O. A role for MORE AXILLARY GROWTH1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2. Plant Physiol. 161, 1885–1902 (2013).

    CAS  Article  Google Scholar 

  21. 21

    Böttcher, C. et al. The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21, 1830–1845 (2009).

    Article  Google Scholar 

  22. 22

    Mizutani, M. & Ohta, D. Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 61, 291–315 (2010).

    CAS  Article  Google Scholar 

  23. 23

    de Vetten, N. et al. A cytochrome b5 is required for full activity of flavonoid 3′,5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc. Natl. Acad. Sci. USA 96, 778–783 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Batard, Y. et al. Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch. Biochem. Biophys. 379, 161–169 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Goldwasser, Y., Yoneyama, K., Xie, X.A. & Yoneyama, K. Production of strigolactones by Arabidopsis thaliana responsible for Orobanche aegyptiaca seed germination. Plant Growth Regul. 55, 21–28 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Cardoso, C. et al. Natural variation of rice strigolactone biosynthesis is associated with the deletion of two MAX1 orthologs. Proc. Natl. Acad. Sci. USA 111, 2379–2384 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Boyer, F.D. et al. Structure-activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol. 159, 1524–1544 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Nomura, S., Nakashima, H., Mizutani, M., Takikawa, H. & Sugimoto, Y. Structural requirements of strigolactones for germination induction and inhibition of Striga gesnerioides seeds. Plant Cell Rep. 32, 829–838 (2013).

    CAS  Article  Google Scholar 

  29. 29

    Akiyama, K., Ogasawara, S., Ito, S. & Hayashi, H. Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol. 51, 1104–1117 (2010).

    CAS  Article  Google Scholar 

  30. 30

    Ting, H.M. et al. The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage. New Phytol. 199, 352–366 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Pompon, D., Louerat, B., Bronine, A. & Urban, P. Yeast expression of animal and plant P450s in optimized redox environments. Methods Enzymol. 272, 51–64 (1996).

    CAS  Article  Google Scholar 

  32. 32

    Cankar, K. et al. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene. FEBS Lett. 585, 178–182 (2011).

    CAS  Article  Google Scholar 

  33. 33

    van Engelen, F.A. et al. Pbinplus—an improved plant transformation vector based on Pbin19. Transgenic Res. 4, 288–290 (1995).

    CAS  Article  Google Scholar 

  34. 34

    Gietz, D., St Jean, A., Woods, R.A. & Schiestl, R.H. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425 (1992).

    CAS  Article  Google Scholar 

  35. 35

    Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    CAS  Article  Google Scholar 

  36. 36

    Voinnet, O., Rivas, S., Mestre, P. & Baulcombe, D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J. 33, 949–956 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Alder, A., Holdermann, I., Beyer, P. & Al-Babili, S. Carotenoid oxygenases involved in plant branching catalyse a highly specific conserved apocarotenoid cleavage reaction. Biochem. J. 416, 289–296 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Reizelman, A. & Zwanenburg, B. Synthesis of the germination stimulants (±)-orobanchol and (±)-strigol via an allylic rearrangement. Synthesis,1952–1955 (2000).

  39. 39

    Reizelman, A., Scheren, M., Nefkens, G.H.L. & Zwanenburg, B. Synthesis of all eight stereoisomers of the germination stimulant strigol. Synthesis, 1944–1951 (2000).

  40. 40

    Eswar, N., Eramian, D., Webb, B., Shen, M.Y. & Sali, A. Protein structure modeling with MODELLER. Methods Mol. Biol. 426, 145–159 (2008).

    CAS  Article  Google Scholar 

  41. 41

    Williams, P.A. et al. Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305, 683–686 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Berman, H.M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    CAS  Article  Google Scholar 

  43. 43

    Lee, D.S., Nioche, P., Hamberg, M. & Raman, C.S. Structural insights into the evolutionary paths of oxylipin biosynthetic enzymes. Nature 455, 363–368 (2008).

    CAS  Article  Google Scholar 

  44. 44

    Li, L., Chang, Z., Pan, Z., Fu, Z.Q. & Wang, X. Modes of heme binding and substrate access for cytochrome P450 CYP74A revealed by crystal structures of allene oxide synthase. Proc. Natl. Acad. Sci. USA 105, 13883–13888 (2008).

    CAS  Article  Google Scholar 

  45. 45

    Ye, Y.Z. & Godzik, A. Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19, ii246–ii255 (2003).

    PubMed  Google Scholar 

  46. 46

    Kraulis, P.J. Molscript—a program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

  47. 47

    Merritt, E.A. & Murphy, M.E.P. Raster3d Version-2.0—a program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    CAS  Article  Google Scholar 

  48. 48

    Bolton, E., Wang, Y., Thiessen, P.A. & Bryant, S.H. PubChem: integrated platform of small molecules and biological activities. Annu. Rep. Comput. Chem. 4, 217–241 (2008).

  49. 49

    Schuttelkopf, A.W. & van Aalten, D.M. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  Google Scholar 

  50. 50

    Morris, G.M. et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791 (2009).

    CAS  Article  Google Scholar 

  51. 51

    Trott, O. & Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank Y. Wang from the Institute of Genetics and Developmental Biology at the Chinese Academy of Science for the p35s:OsD27:PJTK13 plasmid and K. Yoneyama (Weed Science Center, Utsunomiya University, Utsunomiya, Japan) and T. Asami (Department of Applied Biological Chemistry, The University of Tokyo, Japan) for supplying SL standards. We thank J. Beekwilder and K. Cankar (Plant Research International, Wageningen, the Netherlands) for technical advice on the yeast assays and B. Ramakers (Nijmegen University) for technical support with the CD spectra measurement of CL. We thank A. Reeder from the Centre for Microscopy, Characterisation and Analysis (University of Western Australia (UWA)) and M. Clarke from the Centre for Metabolomics (UWA) for technical assistance and instrument access. We acknowledge funding by the Netherlands Organization for Scientific Research (VICI grant 865.06.002 and equipment grant 834.08.001 to H.J.B.), the Australian Research Council (LP0882775 for A.S. and FT110100304 for G.R.F.) and the UK Biotechnology and Biological Sciences Research Council (for J.H. and O.L.). Research reported in this publication was supported by the King Abdullah University of Science and Technology and was cofinanced by the Centre for BioSystems Genomics, which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research.

Author information




Y.Z., C.R.-S. and H.J.B. designed the research. Y.Z. performed the gene cloning, N. benthamiana agro-infiltration, yeast expression assay and part of the MRM-LC/MS analysis experiments; A.S. synthesized the standards for two CL isomers and four 5DS stereoisomers and did CD spectra analysis for all of the compounds; G.R.F. performed chirality analysis for all the samples and compounds; M.H. prepared the CL derived from the Escherichia coli expression assays; T.C. and F.V. developed the MRM-LC/MS analysis protocols and performed MRM-LC/MS analysis, and J.H. cloned rice chromosome 6 MAX1 Os5100. B.Z. synthesized the orobanchol standards. A.D.J.v.D. conducted the protein modeling and docking. Y.Z., A.D.J.v.D., A.S., G.R.F., S.v.d.K., O.L., S.M.S., B.Z., S.A.-B., C.R.-S. and H.J.B. were involved in data interpretation and writing of the manuscript. C.R.-S. and H.J.B. supervised the project. A.D.J.v.D., A.S., G.R.F. and M.H. contributed equally to this work. C.R.-S. and H.J.B. contributed equally to this work.

Corresponding author

Correspondence to Harro J Bouwmeester.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4 and Supplementary Figures 1–11. (PDF 1786 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., van Dijk, A., Scaffidi, A. et al. Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10, 1028–1033 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing