Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plant hormones are versatile chemical regulators of plant growth

Abstract

The plant hormones are a structurally unrelated collection of small molecules derived from various essential metabolic pathways. These compounds are important regulators of plant growth and mediate responses to both biotic and abiotic stresses. During the last ten years there have been many exciting advances in our understanding of plant hormone biology, including new discoveries in the areas of hormone biosynthesis, transport, perception and response. Receptors for many of the major hormones have now been identified, providing new opportunities to study the chemical specificity of hormone signaling. These studies also reveal a surprisingly important role for the ubiquitin-proteasome pathway in hormone signaling. In addition, recent work confirms that hormone signaling interacts at multiple levels during plant growth and development. In the future, a major challenge will be to understand how the information conveyed by these simple compounds is integrated during plant growth.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2: Auxin signaling in Arabidopsis.
Figure 3: Similarities between auxin, JA and GA signaling.
Figure 4: Model of cytokinin signal transduction.

References

  1. Sachs, J. Stoff und Form der Pflanzenorgane. Arb. Bot. Inst. Würzburg 2, 452–488 (1880).

    Google Scholar 

  2. Darwin, C. The Power of Movement in Plants (John Murray, London, 1880).

    Google Scholar 

  3. Jun, J.H., Fiume, E. & Fletcher, J.C. The CLE family of plant polypeptide signaling molecules. Cell. Mol. Life Sci. 65, 743–755 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Davies, P.J. in Plant Hormones Physiology, Biochemistry and Molecular Biology (ed. Davies, P.J.) 1–12 (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995).

    Book  Google Scholar 

  5. Strader, L.C. & Bartel, B. A new path to auxin. Nat. Chem. Biol. 4, 337–339 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Woodward, A.W. & Bartel, B. Auxin: regulation, action, and interaction. Ann. Bot. (Lond.) 95, 707–735 (2005).

    Article  CAS  Google Scholar 

  7. Vieten, A., Sauer, M., Brewer, P.B. & Friml, J. Molecular and cellular aspects of auxin-transport-mediated development. Trends Plant Sci. 12, 160–168 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Badescu, G.O. & Napier, R.M. Receptors for auxin: will it all end in TIRs? Trends Plant Sci. 11, 217–223 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Guilfoyle, T.J. & Hagen, G. Auxin response factors. Curr. Opin. Plant Biol. 10, 453–460 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Szemenyei, H., Hannon, M. & Long, J.A. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319, 1384–1386 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Mockaitis, K. & Estelle, M. Auxin receptors and plant development: a new signaling paradigm. Annu. Rev. Cell Dev. Biol. 24, 55–80 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Pickart, C.M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Deshaies, R.J. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15, 435–467 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Gagne, J.M., Downes, B.P., Shiu, S.H. Durshi, A.M. & Vierstra, R.D. The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 11519–11524 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lechner, E., Achard, P., Vansiri, A., Potuschak, T. & Genschik, P. F-box proteins everywhere. Curr. Opin. Plant Biol. 9, 631–638 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Ruegger, M. et al. The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 12, 198–207 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Dharmasiri, N., Dharmasiri, S., Jones, A.M. & Estelle, M. Auxin action in a cell-free system. Curr. Biol. 13, 1418–1422 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kepinski, S. & Leyser, O. Auxin-induced SCFTIR1-Aux/IAA interaction involves stable modification of the SCFTIR1 complex. Proc. Natl. Acad. Sci. USA 101, 12381–12386 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tan, X. et al. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446, 640–645 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Nemhauser, J.L., Mockler, T.C. & Chory, J. Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2, E258 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Peng, Z.Y. et al. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Res. 37, D975–D982 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. Wasternack, C. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. (Lond.) 100, 681–697 (2007).

    Article  CAS  Google Scholar 

  24. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M. & Turner, J.G. COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280, 1091–1094 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Thines, B. et al. JAZ repressor proteins are targets of the SCF(COI1) complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Melotto, M. et al. A critical role of two positively charged amino acids in the Jas motif of Arabidopsis JAZ proteins in mediating coronatine- and jasmonoyl isoleucine-dependent interactions with the COI1 F-box protein. Plant J. 55, 979–988 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. & Howe, G.A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA 105, 7100–7105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Peng, J. et al. 'Green revolution' genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Fleet, C.M. & Sun, T.P.A. DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8, 77–85 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Schwechheimer, C. Understanding gibberellic acid signaling–are we there yet? Curr. Opin. Plant Biol. 11, 9–15 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Itoh, H., Matsuoka, M. & Steber, C.M. A role for the ubiquitin-26S-proteasome pathway in gibberellin signaling. Trends Plant Sci. 8, 492–497 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. McGinnis, K.M. et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 15, 1120–1130 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sasaki, A. et al. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299, 1896–1898 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Feng, S. et al. Coordinated regulation of Arabidopsis thaliana development by light and gibberellins. Nature 451, 475–479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Griffiths, J. et al. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18, 3399–3414 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Nakajima, M. et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant J. 46, 880–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Willige, B.C. et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 19, 1209–1220 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Shimada, A. et al. Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520–523 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Murase, K., Hirano, Y., Sun, T.P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Miller, C., Skoog, F., Saltza, M.V. & Strong, M. Kinetic, a cell division factor from deoxyribonucleic acid. J. Am. Chem. Soc. 77, 1392 (1955).

    Article  CAS  Google Scholar 

  45. To, J.P. & Kieber, J.J. Cytokinin signaling: two-components and more. Trends Plant Sci. 13, 85–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Murray, J.D. et al. A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315, 101–104 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Frugier, F., Kosuta, S., Murray, J.D., Crespi, M. & Szczyglowski, K. Cytokinin: secret agent of symbiosis. Trends Plant Sci. 13, 115–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Sakakibara, H. Cytokinins: activity, biosynthesis, and translocation. Annu. Rev. Plant Biol. 57, 431–449 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kurakawa, T. et al. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445, 652–655 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Rashotte, A.M., Carson, S.D., To, J.P. & Kieber, J.J. Expression profiling of cytokinin action in Arabidopsis. Plant Physiol. 132, 1998–2011 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rashotte, A.M. et al. A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc. Natl. Acad. Sci. USA 103, 11081–11085 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Theologis, A. One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70, 181–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Kendrick, M.D. & Chang, C. Ethylene signaling: new levels of complexity and regulation. Curr. Opin. Plant Biol. 11, 479–485 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Paepe, A. & Van der Straeten, D. Ethylene biosynthesis and signaling: an overview. Vitam. Horm. 72, 399–430 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Adams, D.O. & Yang, S.F. Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. USA 76, 170–174 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, K.L., Yoshida, H., Lurin, C. & Ecker, J.R. Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945–950 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Christians, M.J. et al. The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J. 57, 332–345 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Qiao, H., Chang, K.N., Yazaki, J. & Ecker, J.R. Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev. 23, 512–521 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nambara, E. & Marion-Poll, A. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56, 165–185 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Israelsson, M. et al. Guard cell ABA and CO2 signaling network updates and Ca2+ sensor priming hypothesis. Curr. Opin. Plant Biol. 9, 654–663 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Shen, Y.Y. et al. The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823–826 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Muller, A.H. & Hansson, M. The barley magnesium chelatase 150-kDa subunit is not an abscisic acid receptor. Plant Physiol. published online, doi:10.1104/pp.109.135277 (28 January 2009).

  63. Liu, X. et al. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science 315, 1712–1716 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Johnston, C.A. et al. Comment on “A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid”. Science 318, 914, author reply 914 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Guo, J., Zeng, Q., Emami, M., Ellis, B.E. & Chen, J.G. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PLoS One 3, e2982 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gao, Y. et al. Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant J. 52, 1001–1013 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Pandey, S., Nelson, D.C. & Assmann, S.M. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136–148 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. McCourt, P. & Creelman, R. The ABA receptors–we report you decide. Curr. Opin. Plant Biol. 11, 474–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Hirayama, T. & Shinozaki, K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends Plant Sci. 12, 343–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Finkelstein, R., Reeves, W., Ariizumi, T. & Steber, C. Molecular aspects of seed dormancy. Annu. Rev. Plant Biol. 59, 387–415 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Stone, S.L., Williams, L.A., Farmer, L.M., Vierstra, R.D. & Callis, J. KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18, 3415–3428 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, X., Garreton, V. & Chua, N.H. The AIP2 E3 ligase acts as a novel negative regulator of ABA signaling by promoting ABI3 degradation. Genes Dev. 19, 1532–1543 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Vlot, A.C., Klessig, D.F. & Park, S.W. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol. 11, 436–442 (2008).

    Article  CAS  PubMed  Google Scholar 

  74. Durrant, W.E. & Dong, X. Systemic acquired resistance. Annu. Rev. Phytopathol. 42, 185–209 (2004).

    Article  CAS  PubMed  Google Scholar 

  75. Gingerich, D.J. et al. Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a-brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J. Biol. Chem. 280, 18810–18821 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Stepanova, A.N., Hoyt, J.M., Hamilton, A.A. & Alonso, J.M. A Link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17, 2230–2242 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stepanova, A.N. et al. TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133, 177–191 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Tao, Y. et al. Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133, 164–176 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tsuchisaka, A. & Theologis, A. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982–3000 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Feraru, E. & Friml, J. PIN polar targeting. Plant Physiol. 147, 1553–1559 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laplaze, L. et al. Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19, 3889–3900 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blilou, I. et al. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433, 39–44 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Goda, H. et al. Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 134, 1555–1573 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mouchel, C.F., Osmont, K.S. & Hardtke, C.S. BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443, 458–461 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Weiss, D. & Ori, N. Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol. 144, 1240–1246 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fu, X. & Harberd, N.P. Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421, 740–743 (2003).

    Article  CAS  PubMed  Google Scholar 

  87. Achard, P., Vriezen, W.H., Van Der Straeten, D. & Harberd, N.P. Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15, 2816–2825 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Leyser, O. The control of shoot branching: an example of plant information processing. Plant Cell Environ. published online, doi:10.1111/j.1365–3040.2009.01930.x (1 January 2009).

  89. Gomez-Roldan, V. et al. Strigolactone inhibition of shoot branching. Nature 455, 189–194 (2008).

    Article  CAS  PubMed  Google Scholar 

  90. Umehara, M. et al. Inhibition of shoot branching by new terpenoid plant hormones. Nature 455, 195–200 (2008).

    Article  CAS  PubMed  Google Scholar 

  91. Bennett, T. et al. The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr. Biol. 16, 553–563 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Stirnberg, P., van De Sande, K. & Leyser, H.M. MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129, 1131–1141 (2002).

    Article  CAS  PubMed  Google Scholar 

  93. Flores, T. et al. Arginase-negative mutants of Arabidopsis exhibit increased nitric oxide signaling in root development. Plant Physiol. 147, 1936–1946 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hayashi, K. et al. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc. Natl. Acad. Sci. USA 105, 5632–5637 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jönsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M. & Mjolsness, E. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. USA 103, 1633–1638 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hamant, O. et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Grieneisen, V.A., Xu, J., Maree, A.F., Hogeweg, P. & Scheres, B. Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449, 1008–1013 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Kramer, E.M., Draye, X. & Bennett, M.J. Modelling root growth and development. SEB Exp. Biol. Ser. 61, 195–211 (2008).

    CAS  PubMed  Google Scholar 

  99. Smith, R.S. et al. A plausible model of phyllotaxis. Proc. Natl. Acad. Sci. USA 103, 1301–1306 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' work is supported by grants to M.E. from the US National Institutes of Health (GM 43644), the US Department of Energy (De-FG02-02ER15312) and the US National Science Foundation (MCB-0519970, IOS-0849069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Estelle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Santner, A., Calderon-Villalobos, L. & Estelle, M. Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5, 301–307 (2009). https://doi.org/10.1038/nchembio.165

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.165

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing