Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pharmacological targeting of the pseudokinase Her3

Abstract

Her3 (also known as ErbB3) belongs to the epidermal growth factor receptor tyrosine kinases and is well credentialed as an anti-cancer target but is thought to be 'undruggable' using ATP-competitive small molecules because it lacks appreciable kinase activity. Here we report what is to our knowledge the first selective Her3 ligand, TX1-85-1, that forms a covalent bond with Cys721 located in the ATP-binding site of Her3. We demonstrate that covalent modification of Her3 inhibits Her3 signaling but not proliferation in some Her3-dependent cancer cell lines. Subsequent derivatization with a hydrophobic adamantane moiety demonstrates that the resultant bivalent ligand (TX2-121-1) enhances inhibition of Her3-dependent signaling. Treatment of cells with TX2-121-1 results in partial degradation of Her3 and serendipitously interferes with productive heterodimerization between Her3 with either Her2 or c-Met. These results suggest that small molecules will be capable of perturbing the biological function of Her3 and 60 other pseudokinases found in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hit identification and development of the Her3 irreversible inhibitor TX1-85-1.
Figure 2: TX1-85-1 is insufficient to inactivate the Her3-PI3K-AKT pathway, explaining lack of growth inhibition for Her3-dependent cells.
Figure 3: Adamantane-conjugated compounds induce Her3 degradation.
Figure 4: C721S rescue from compound-induced degradation.
Figure 5: Mechanism of TX2-121-1 compound-induced degradation and interferences with Her2-Her3 and c-Met–Her3 interactions.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Piccart-Gebhart, M.J. et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med. 353, 1659–1672 (2005).

    Article  CAS  Google Scholar 

  2. Romond, E.H. et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N. Engl. J. Med. 353, 1673–1684 (2005).

    Article  CAS  Google Scholar 

  3. Paez, J.G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004).

    Article  CAS  Google Scholar 

  4. Wadhwa, R. et al. Gastric cancer—molecular and clinical dimensions. Nat. Rev. Clin. Oncol. 10, 643–655 (2013).

    Article  CAS  Google Scholar 

  5. Zhang, X., Gureasko, J., Shen, K., Cole, P.A. & Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125, 1137–1149 (2006).

    Article  CAS  Google Scholar 

  6. Jura, N., Shan, Y.B., Cao, X.X., Shaw, D.E. & Kuriyan, J. Structural analysis of the catalytically inactive kinase domain of the human EGF receptor 3. Proc. Natl. Acad. Sci. USA 106, 21608–21613 (2009).

    Article  CAS  Google Scholar 

  7. Shi, F., Telesco, S.E., Liu, Y.T., Radhakrishnan, R. & Lemmon, M.A. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc. Natl. Acad. Sci. USA 107, 7692–7697 (2010).

    Article  CAS  Google Scholar 

  8. Guy, P.M., Platko, J.V., Cantley, L.C., Cerione, R.A. & Carraway, K.L. Insect cell-expressed P180 (ErbB3) possesses an impaired tyrosine kinase activity. Proc. Natl. Acad. Sci. USA 91, 8132–8136 (1994).

    Article  CAS  Google Scholar 

  9. Sierke, S.L., Cheng, K.R., Kim, H.H. & Koland, J.G. Biochemical characterization of the protein tyrosine kinase homology domain of the ErbBB (HER3) receptor protein. Biochem. J. 322, 757–763 (1997).

    Article  CAS  Google Scholar 

  10. Engelman, J.A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  Google Scholar 

  11. Yarden, Y. & Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2, 127–137 (2001).

    Article  CAS  Google Scholar 

  12. Hynes, N.E. & Lane, H.A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  13. Baselga, J. & Swain, S.M. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat. Rev. Cancer 9, 463–475 (2009).

    Article  CAS  Google Scholar 

  14. Tanner, B. et al. ErbB3 predicts survival in ovarian cancer. J. Clin. Oncol. 24, 4317–4323 (2006).

    Article  CAS  Google Scholar 

  15. Vaught, D.B. et al. HER3 is required for HER2-induced preneoplastic changes to the breast epithelium and tumor formation. Cancer Res. 72, 2672–2682 (2012).

    Article  CAS  Google Scholar 

  16. Lee-Hoeflich, S.T. et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 68, 5878–5887 (2008).

    Article  CAS  Google Scholar 

  17. Chen, H.Y. et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N. Engl. J. Med. 356, 11–20 (2007).

    Article  CAS  Google Scholar 

  18. Sergina, N.V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    Article  CAS  Google Scholar 

  19. Garrett, J.T. et al. Her3 (ErbB3) compensates for inhibition of the Her2 tyrosine kinase. Proc. Natl. Acad. Sci. USA 108, 5021–5026 (2011).

    Article  CAS  Google Scholar 

  20. Sheng, Q. et al. An activated ErbB3/NRG1 autocrine loop supports in vivo proliferation in ovarian cancer cells. Cancer Cell 17, 298–310 (2010).

    Article  CAS  Google Scholar 

  21. Schaefer, G. et al. A two-in-one antibody against HER3 and EGFR has superior inhibitory activity compared with monospecific antibodies. Cancer Cell 20, 472–486 (2011).

    Article  CAS  Google Scholar 

  22. Schoeberl, B. et al. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 70, 2485–2494 (2010).

    Article  CAS  Google Scholar 

  23. Berlin, J. et al. A first-in-human phase I study of U3–1287 (AMG 888), a HER3 inhibitor, in patients (pts) with advanced solid tumors. J. Clin. Oncol. 29 (Suppl): abstr 3026 (2011).

    Article  Google Scholar 

  24. Baselga, J. et al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med. 366, 109–119 (2012).

    Article  CAS  Google Scholar 

  25. Neklesa, T.K. et al. Small-molecule hydrophobic tagging–induced degradation of HaloTag fusion proteins. Nat. Chem. Biol. 7, 538–543 (2011).

    Article  CAS  Google Scholar 

  26. Tae, H.S. et al. Identification of hydrophobic tags for the degradation of stabilized proteins. ChemBioChem 13, 538–541 (2012).

    Article  CAS  Google Scholar 

  27. Liu, Q. et al. Developing irreversible inhibitors of the protein kinase cysteinome. Chem. Biol. 20, 146–159 (2013).

    Article  Google Scholar 

  28. Lebakken, C.S. et al. Development and applications of a broad-coverage, TR-FRET–based kinase binding assay platform. J. Biomol. Screen. 14, 924–935 (2009).

    Article  CAS  Google Scholar 

  29. Burchat, A. et al. Discovery of A-770041, a src-family selective orally active lck inhibitor that prevents organ allograft rejection. Bioorg. Med. Chem. Lett. 16, 118–122 (2006).

    Article  CAS  Google Scholar 

  30. Arnold, L.D. et al. Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck I. Bioorg. Med. Chem. Lett. 10, 2167–2170 (2000).

    Article  CAS  Google Scholar 

  31. Burchat, A.F. et al. Pyrrolo[2,3-d]pyrimidines containing an extended 5-substituent as potent and selective inhibitors of lck II. Bioorg. Med. Chem. Lett. 10, 2171–2174 (2000).

    Article  CAS  Google Scholar 

  32. Das, J. et al. 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3 -thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem. 49, 6819–6832 (2006).

    Article  CAS  Google Scholar 

  33. Boschelli, D.H. et al. Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J. Med. Chem. 44, 3965–3977 (2001).

    Article  CAS  Google Scholar 

  34. Patricelli, M.P. et al. Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350–358 (2007).

    Article  CAS  Google Scholar 

  35. Patricelli, M.P. et al. In situ kinase profiling reveals functionally relevant properties of native kinases. Chem. Biol. 18, 699–710 (2011).

    Article  CAS  Google Scholar 

  36. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  Google Scholar 

  37. Turke, A.B. et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell 17, 77–88 (2010).

    Article  CAS  Google Scholar 

  38. Long, M.J.C., Gollapalli, D.R. & Hedstrom, L. Inhibitor mediated protein degradation. Chem. Biol. 19, 629–637 (2012).

    Article  CAS  Google Scholar 

  39. Neklesa, T.K. & Crews, C.M. Greasy tags for protein removal. Nature 487, 308–309 (2012).

    Article  CAS  Google Scholar 

  40. Polier, S. et al. ATP-competitive inhibitors block protein kinase recruitment to the Hsp90-Cdc37 system. Nat. Chem. Biol. 9, 307–312 (2013).

    Article  CAS  Google Scholar 

  41. Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nat. Chem. Biol. 4, 691–699 (2008).

    Article  CAS  Google Scholar 

  42. Kwiatkowski, N. et al. Small-molecule kinase inhibitors provide insight into Mps1 cell cycle function. Nat. Chem. Biol. 6, 359–368 (2010).

    Article  CAS  Google Scholar 

  43. Deng, X. et al. Characterization of a selective inhibitor of the Parkinsons disease kinase LRRK2. Nat. Chem. Biol. 7, 203–205 (2011).

    Article  CAS  Google Scholar 

  44. Diamonti, A.J. et al. An RBCC protein implicated in maintenance of steady-state neuregulin receptor levels. Proc. Natl. Acad. Sci. USA 99, 2866 (2002).

    Article  CAS  Google Scholar 

  45. Bouyain, S. & Leahy, D.J. Structure-based mutagenesis of the substrate-recognition domain of Nrdp1/FLRF identifies the binding site for the receptor tyrosine kinase ErbB3. Protein Sci. 16, 654 (2007).

    Article  CAS  Google Scholar 

  46. Carraway, K.L. E3 ubiquitin ligases in ErbB receptor quantity control Semin. Cell Dev. Biol. 21, 936 (2010).

    Article  CAS  Google Scholar 

  47. Ahmed, S.F. et al. The chaperone-assisted E3 ligase C terminus of Hsc70-interacting protein (CHIP) targets PTEN for proteasomal degradation. J. Biol. Chem. 287, 15996 (2012).

    Article  CAS  Google Scholar 

  48. Yun, C.H. et al. Structures of lung cancer–derived EGFR mutants and inhibitor complexes: mechanism of activation and insights into differential inhibitor sensitivity. Cancer Cell 11, 217–227 (2007).

    Article  CAS  Google Scholar 

  49. Zhang, Z. & Marshall, A.G. A universal algorithm for fast and automated charge state deconvolution of electrospray mass-to-charge ratio spectra. J. Am. Soc. Mass Spectrom. 9, 225–233 (1998).

    Article  CAS  Google Scholar 

  50. Ficarro, S.B. et al. Improved electrospray ionization efficiency compensates for diminished chromatographic resolution and enables proteomics analysis of tyrosine signaling in embryonic stem cells. Anal. Chem. 81, 3440–3447 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank staff at The Institute of Chemistry and Cell Biology for the guidance of screening equipment and assay development discussion. We thank J. Minna and M. Peyton of UT Southwestern Medical Center for providing the HCC2935 cell line. This work is supported by the Dana Farber Cancer Institute Lander Fellowship (T.X.), Claudia Adams Barr Program Award (N.S.G.), US National Institutes of Health (NIH) grant AI 084140-03 (C.M.C.), Cancer Prevention Research Institute of Texas grant R1207 (K.D.W.), creative/challenging research program of National Research Foundation of Korea NRF-2011-0028676 (T.S.) and NIH grant P01 CA154303 (P.A.J. and N.S.G.).

Author information

Authors and Affiliations

Authors

Contributions

N.S.G. oversaw all aspects of the experiments and manuscript preparation. T.X. and S.M.L. performed the chemical synthesis and structure-activity relationship analysis. H.S.T. and C.M.C. provided assistance and reagents for synthesis of adamantane derivatives. T.X. performed hits/leads valuation by protein- and cell-based assays with assistance from D.E., P.A.J., K.D.W., D.U. and M.E.D. K.D.W., D.G. and T.X. expressed and purified Her3 protein. T.X. and S.M.R. optimized the FRET-based binding assay. T.S. performed molecular docking studies. S.B.F., J.A.M., K.D.W., D.G. and T.X. conducted MS labeling experiments and analyses. T.X. and N.S.G. wrote the manuscript, and all coauthors participated in editing this manuscript.

Corresponding authors

Correspondence to Pasi A Jänne, Craig M Crews or Nathanael S Gray.

Ethics declarations

Competing interests

C.M.C. is founder and an equity shareholder in Arvinas, Inc., which is developing small molecule -induced protein degradation as a therapeutic methodology.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–11, Supplementary Tables 1–3 and Supplementary Note. (PDF 2738 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Lim, S., Westover, K. et al. Pharmacological targeting of the pseudokinase Her3. Nat Chem Biol 10, 1006–1012 (2014). https://doi.org/10.1038/nchembio.1658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1658

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer