Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terazosin activates Pgk1 and Hsp90 to promote stress resistance

Abstract

Drugs that can protect against organ damage are urgently needed, especially for diseases such as sepsis and brain stroke. We discovered that terazosin (TZ), a widely marketed α1-adrenergic receptor antagonist, alleviated organ damage and improved survival in rodent models of stroke and sepsis. Through combined studies of enzymology and X-ray crystallography, we discovered that TZ binds a new target, phosphoglycerate kinase 1 (Pgk1), and activates its enzymatic activity, probably through 2,4-diamino-6,7-dimethoxyisoquinoline′s ability to promote ATP release from Pgk1. Mechanistically, the ATP generated from Pgk1 may enhance the chaperone activity of Hsp90, an ATPase known to associate with Pgk1. Upon activation, Hsp90 promotes multistress resistance. Our studies demonstrate that TZ has a new protein target, Pgk1, and reveal its corresponding biological effect. As a clinical drug, TZ may be quickly translated into treatments for diseases including stroke and sepsis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TZ blocks apoptosis in cultured mammalian cells.
Figure 2: Pgk1 as the target of TZ.
Figure 3: Crystal structure of Pgk1 and TZ binding.
Figure 4: The antiapoptosis effect of TZ was dependent on Hsp90.
Figure 5: TZ shows multiple stress resistance in flies and rodents.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Annane, D. et al. Corticosteroids in the treatment of severe sepsis and septic shock in adults: a systematic review. J. Am. Med. Assoc. 301, 2362–2375 (2009).

    Article  CAS  Google Scholar 

  2. Kumar, A. Optimizing antimicrobial therapy in sepsis and septic shock. Crit. Care. Nurs. Clin. North Am. 23, 79–97 (2011).

    Article  Google Scholar 

  3. Ulloa, L., Brunner, M., Ramos, L. & Deitch, E.A. Scientific and clinical challenges in sepsis. Curr. Pharm. Des. 15, 1918–1935 (2009).

    Article  CAS  Google Scholar 

  4. Yuan, J. Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14, 469–477 (2009).

    Article  Google Scholar 

  5. Yuan, J.Y. & Horvitz, H.R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138, 33–41 (1990).

    Article  CAS  Google Scholar 

  6. Lang, J.D. & Matute-Bello, G. Lymphocytes, apoptosis and sepsis: making the jump from mice to humans. Crit. Care 13, 109 (2009).

    Article  Google Scholar 

  7. Jana, S. & Paliwal, J. Apoptosis: potential therapeutic targets for new drug discovery. Curr. Med. Chem. 14, 2369–2379 (2007).

    Article  CAS  Google Scholar 

  8. Lanneau, D., de Thonel, A., Maurel, S., Didelot, C. & Garrido, C. Apoptosis versus cell differentiation: role of heat shock proteins HSP90, HSP70 and HSP27. Prion 1, 53–60 (2007).

    Article  Google Scholar 

  9. Ndubaku, C., Cohen, F., Varfolomeev, E. & Vucic, D. Targeting inhibitor of apoptosis proteins for therapeutic intervention. Future Med Chem 1, 1509–1525 (2009).

    Article  CAS  Google Scholar 

  10. Taipale, M., Jarosz, D.F. & Lindquist, S. HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat. Rev. Mol. Cell Biol. 11, 515–528 (2010).

    Article  CAS  Google Scholar 

  11. Falsone, S.F., Gesslbauer, B., Tirk, F., Piccinini, A.M. & Kungl, A.J. A proteomic snapshot of the human heat shock protein 90 interactome. FEBS Lett. 579, 6350–6354 (2005).

    Article  CAS  Google Scholar 

  12. Zhao, R. et al. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell 120, 715–727 (2005).

    Article  CAS  Google Scholar 

  13. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

    Article  CAS  Google Scholar 

  14. Fuchs, Y. & Steller, H. Programmed cell death in animal development and disease. Cell 147, 742–758 (2011).

    Article  CAS  Google Scholar 

  15. White, K., Tahaoglu, E. & Steller, H. Cell killing by the Drosophila gene reaper. Science 271, 805–807 (1996).

    Article  CAS  Google Scholar 

  16. Albina, J.E., Cui, S., Mateo, R.B. & Reichner, J.S. Nitric oxide–mediated apoptosis in murine peritoneal macrophages. J. Immunol. 150, 5080–5085 (1993).

    CAS  PubMed  Google Scholar 

  17. Bordner, J., Campbell, S.F., Palmer, M.J. & Tute, M.S. 1,3-Diamino-6,7-dimethoxyisoquinoline derivatives as potential α1-adrenoceptor antagonists. J. Med. Chem. 31, 1036–1039 (1988).

    Article  CAS  Google Scholar 

  18. Han, J., Miyamae, Y., Shigemori, H. & Isoda, H. Neuroprotective effect of 3,5-di-O-caffeoylquinic acid on SH-SY5Y cells and senescence-accelerated-prone mice 8 through the up-regulation of phosphoglycerate kinase-1. Neuroscience 169, 1039–1045 (2010).

    Article  CAS  Google Scholar 

  19. Mazzoni, C., Torella, M., Petrera, A., Palermo, V. & Falcone, C. PGK1, the gene encoding the glycolitic enzyme phosphoglycerate kinase, acts as a multicopy suppressor of apoptotic phenotypes in S. cerevisiae. Yeast 26, 31–37 (2009).

    Article  CAS  Google Scholar 

  20. Banks, R.D. et al. Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature 279, 773–777 (1979).

    Article  CAS  Google Scholar 

  21. Bernstein, B.E., Michels, P.A. & Hol, W.G. Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Nature 385, 275–278 (1997).

    Article  CAS  Google Scholar 

  22. Zerrad, L. et al. A spring-loaded release mechanism regulates domain movement and catalysis in phosphoglycerate kinase. J. Biol. Chem. 286, 14040–14048 (2011).

    Article  CAS  Google Scholar 

  23. Sawyer, G.M., Monzingo, A.F., Poteet, E.C., O′Brien, D.A. & Robertus, J.D. X-ray analysis of phosphoglycerate kinase 2, a sperm-specific isoform from Mus musculus. Proteins 71, 1134–1144 (2008).

    Article  CAS  Google Scholar 

  24. Flachner, B. et al. Substrate-assisted movement of the catalytic Lys 215 during domain closure: site-directed mutagenesis studies of human 3-phosphoglycerate kinase. Biochemistry 44, 16853–16865 (2005).

    Article  CAS  Google Scholar 

  25. Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).

    Article  CAS  Google Scholar 

  26. Jackson, S.E. Hsp90: structure and function. Top. Curr. Chem. 328, 155–240 (2013).

    Article  CAS  Google Scholar 

  27. Kamal, A. et al. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–410 (2003).

    Article  CAS  Google Scholar 

  28. Guo, F. et al. Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res. 65, 10536–10544 (2005).

    Article  CAS  Google Scholar 

  29. Remick, D.G., Newcomb, D.E., Bolgos, G.L. & Call, D.R. Comparison of the mortality and inflammatory response of two models of sepsis: lipopolysaccharide vs. cecal ligation and puncture. Shock 13, 110–116 (2000).

    Article  CAS  Google Scholar 

  30. Rittirsch, D., Huber-Lang, M.S., Flierl, M.A. & Ward, P.A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 4, 31–36 (2009).

    Article  CAS  Google Scholar 

  31. Maciel, A.T., Noritomi, D.T. & Park, M. Metabolic acidosis in sepsis. Endocr. Metab. Immune Disord. Drug Targets 10, 252–257 (2010).

    Article  CAS  Google Scholar 

  32. Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    Article  CAS  Google Scholar 

  33. Akduman, B. & Crawford, E.D. Terazosin, doxazosin, and prazosin: current clinical experience. Urology 58, 49–54 (2001).

    Article  CAS  Google Scholar 

  34. Miksa, M., Wu, R., Zhou, M. & Wang, P. Sympathetic excitotoxicity in sepsis: pro-inflammatory priming of macrophages by norepinephrine. Front. Biosci. 10, 2217–2229 (2005).

    Article  CAS  Google Scholar 

  35. Lee, D.L., Webb, R.C. & Brands, M.W. Sympathetic and angiotensin-dependent hypertension during cage-switch stress in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1394–R1398 (2004).

    Article  CAS  Google Scholar 

  36. Rupadevi, M., Parasuraman, S. & Raveendran, R. Protocol for middle cerebral artery occlusion by an intraluminal suture method. J. Pharmacol. Pharmacother. 2, 36–39 (2011).

    Article  CAS  Google Scholar 

  37. Shirakawa, K., Takahashi, Y. & Miyajima, H. Intronic mutation in the PGK1 gene may cause recurrent myoglobinuria by aberrant splicing. Neurology 66, 925–927 (2006).

    Article  Google Scholar 

  38. Ai, J. et al. FLNA and PGK1 are two potential markers for progression in hepatocellular carcinoma. Cell. Physiol. Biochem. 27, 207–216 (2011).

    Article  CAS  Google Scholar 

  39. Duan, Z. et al. Overexpression of human phosphoglycerate kinase 1 (PGK1) induces a multidrug resistance phenotype. Anticancer Res. 22, 1933–1941 (2002).

    CAS  PubMed  Google Scholar 

  40. Geerlof, A., Schmidt, P.P., Travers, F. & Barman, T. Cryoenzymic studies on yeast 3-phosphoglycerate kinase. Attempt to obtain the kinetics of the hinge-bending motion. Biochemistry 36, 5538–5545 (1997).

    Article  CAS  Google Scholar 

  41. Jackson, S.E. Hsp90: structure and function. Top. Curr. Chem. 328, 155–240 (2012).

    Article  Google Scholar 

  42. Pandey, P. et al. Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J. 19, 4310–4322 (2000).

    Article  CAS  Google Scholar 

  43. Zhao, C. & Wang, E. Heat shock protein 90 suppresses tumor necrosis factor α induced apoptosis by preventing the cleavage of Bid in NIH3T3 fibroblasts. Cell. Signal. 16, 313–321 (2004).

    Article  CAS  Google Scholar 

  44. Sato, S., Fujita, N. & Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97, 10832–10837 (2000).

    Article  CAS  Google Scholar 

  45. Lewis, J. et al. Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-κB activation. J. Biol. Chem. 275, 10519–10526 (2000).

    Article  CAS  Google Scholar 

  46. Li, X. et al. The role of the Hsp90/Akt pathway in myocardial calpain-induced caspase-3 activation and apoptosis during sepsis. BMC Cardiovasc. Disord. 13, 8 (2013).

    Article  Google Scholar 

  47. Chatterjee, A. et al. Heat shock protein 90 inhibitors prolong survival, attenuate inflammation, and reduce lung injury in murine sepsis. Am. J. Respir. Crit. Care Med. 176, 667–675 (2007).

    Article  CAS  Google Scholar 

  48. Chatterjee, A. et al. Heat shock protein 90 inhibitors attenuate LPS-induced endothelial hyperpermeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L755–L763 (2008).

    Article  CAS  Google Scholar 

  49. Zou, J., Guo, Y., Guettouche, T., Smith, D.F. & Voellmy, R. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–480 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Chinese Ministry of Science and Technology (2013CB530700), the National Natural Science Foundation of China (NSFC31171324) and the Beijing Institute for Brain Disorder and Beijing Tiantan Hospital, Capital Medical University, China to L.L. and by the Ministry of Education of China and US National Institutes of Health grant HL48675 and funds from the Peking-Tsinghua Center for Life Sciences to J.W. We also acknowledge the Ministry of Science and Technology Basic Research Program (2011CB809100), the National Natural Science Foundation of China (21272016) and the Doctoral Fund of Ministry of Education of China (20120001110083) to Xiaoyu Li. We thank. L. Lai (Peking University) for her generous support in the ITC experiments. We thank the staff members at the Shanghai Synchrotron Radiation Facility and KEK-PF for generous support.

Author information

Authors and Affiliations

Authors

Contributions

X.C., C.Z., T.W. and L.L. designed the experiments. X.C., C.Z. and T.W. performed the biological experiments. Xiaolong Li, L.F. and J.W. performed the crystal structure study. Y.D. and M.D. performed MS analysis. Y.L. and C.C. performed the chemical synthesis. Xiaoyu Li designed the chemical study. X.C., C.Z., J.W., Xiaoyu Li and L.L. wrote the manuscript.

Corresponding authors

Correspondence to Jia-huai Wang, Xiaoyu Li or Lei Liu.

Ethics declarations

Competing interests

The authors declare competing financial interests for the novel use of TZ and its related chemicals to target Pgk1 and their related disease treatments. The authors have patented TZ for related disease treatments under patent numbers ZL 2011 1 0413931.0 and 201110412182.X at the Chinese Patent Office.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–17. (PDF 2061 kb)

Supplementary Data Sets

Supplementary Data Sets 1–6. (XLS 476 kb)

Supplementary Note 1

Procedures for chemical synthesis (DOC 210 kb)

Supplementary Note 2

Summary of MS results (DOC 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhao, C., Li, X. et al. Terazosin activates Pgk1 and Hsp90 to promote stress resistance. Nat Chem Biol 11, 19–25 (2015). https://doi.org/10.1038/nchembio.1657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1657

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research