Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Diels-Alder reaction–triggered bioorthogonal protein decaging in living cells

Abstract

Small molecules that specifically activate an intracellular protein of interest are highly desirable. A generally applicable strategy, however, remains elusive. Herein we describe a small molecule–triggered bioorthogonal protein decaging technique that relies on the inverse electron-demand Diels-Alder reaction for eliminating a chemically caged protein side chain within living cells. This method permits the efficient activation of a given protein (for example, an enzyme) in its native cellular context within minutes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: InvDA-mediated elimination reaction for protein activation in living cells.
Figure 2: Demonstration of the invDA-mediated elimination reaction on model GFP protein in aqueous buffer and in living cells.
Figure 3: InvDA-mediated activation of caged fLuc in living cells.

Similar content being viewed by others

References

  1. Zorn, J.A. & Wells, J.A. Nat. Chem. Biol. 6, 179–188 (2010).

    Article  CAS  Google Scholar 

  2. Banaszynski, L.A., Chen, L.-c., Maynard-Smith, L.A., Ooi, A.G.L. & Wandless, T.J.A. Cell 126, 995–1004 (2006).

    Article  CAS  Google Scholar 

  3. Qiao, Y., Molina, H., Pandey, A., Zhang, J. & Cole, P.A. Science 311, 1293–1297 (2006).

    Article  CAS  Google Scholar 

  4. Li, J. et al. Nat. Chem. 6, 352–361 (2014).

    Article  CAS  Google Scholar 

  5. Knall, A.-C. & Slugovc, C. Chem. Soc. Rev. 42, 5131–5142 (2013).

    Article  CAS  Google Scholar 

  6. Selvaraj, R. & Fox, J.M. Curr. Opin. Chem. Biol. 17, 753–760 (2013).

    Article  CAS  Google Scholar 

  7. Sauer, J. et al. Eur. J. Org. Chem. 1998, 2885–2896 (1998).

    Article  Google Scholar 

  8. Versteegen, R.M., Rossin, R., tenHoeve, W., Janssen, H.M. & Robillard, M.S. Angew. Chem. Int. Ed. Engl. 52, 14112–14116 (2013).

    Article  CAS  Google Scholar 

  9. Royzen, M., Yap, G.P.A. & Fox, J.M. J. Am. Chem. Soc. 130, 3760–3761 (2008).

    Article  CAS  Google Scholar 

  10. Hao, B. et al. Science 296, 1462–1466 (2002).

    Article  CAS  Google Scholar 

  11. Liu, C.C. & Schultz, P.G. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  12. Chin, J.W. Annu. Rev. Biochem. 83, 379–408 (2014).

    Article  CAS  Google Scholar 

  13. Lang, K. & Chin, J.W. Chem. Rev. 114, 4764–4806 (2014).

    Article  CAS  Google Scholar 

  14. Wan, W., Tharp, J.M. & Liu, W.R. Biochim. Biophys. Acta 1844, 1059–1070 (2014).

    Article  CAS  Google Scholar 

  15. Yanagisawa, T. et al. Chem. Biol. 15, 1187–1197 (2008).

    Article  CAS  Google Scholar 

  16. Yanagisawa, T. et al. Mol. Biosyst. 8, 1131–1135 (2012).

    Article  CAS  Google Scholar 

  17. Nikić, I. et al. Angew. Chem. Int. Ed. Engl. 53, 2245–2249 (2014).

    Article  Google Scholar 

  18. Chatgilialoglu, C. & Ferreri, C. Acc. Chem. Res. 38, 441–448 (2005).

    Article  CAS  Google Scholar 

  19. Zhao, J., Lin, S., Huang, Y., Zhao, J. & Chen, P.R. J. Am. Chem. Soc. 135, 7410–7413 (2013).

    Article  CAS  Google Scholar 

  20. Gautier, A., Deiters, A. & Chin, J.W. J. Am. Chem. Soc. 133, 2124–2127 (2011).

    Article  CAS  Google Scholar 

  21. Wei, P. et al. Nature 488, 384–388 (2012).

    Article  CAS  Google Scholar 

  22. Sasmal, P.K., Streu, C.N. & Meggers, E. Chem. Commun. (Camb.) 49, 1581–1587 (2013).

    Article  CAS  Google Scholar 

  23. Bielski, R. & Witczak, Z. Chem. Rev. 113, 2205–2243 (2013).

    Article  CAS  Google Scholar 

  24. Li, L. et al. Nat. Commun. 5, 3276 (2014).

    Article  Google Scholar 

  25. Chan, J., Dodani, S.C. & Chang, C.J. Nat. Chem. 4, 973–984 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from R. Meng and the Proteomic Mass Spectrometry Core of the National Facilities for Protein Sciences (the Phoenix Project) at Peking University. This work was supported by the National Basic Research Program of China (2010CB912300 and 2012CB917301) and the National Natural Science Foundation of China (21225206 and 91313301). J.L. acknowledges support from the Peking University Principal Foundation. S.F. Reichard edited the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

P.R.C. and J.L. designed the experimental strategy and wrote the manuscript. J.L. and S.J. performed the experiments. All authors prepared the figures and edited the manuscript.

Corresponding author

Correspondence to Peng R Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–21. (PDF 4649 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jia, S. & Chen, P. Diels-Alder reaction–triggered bioorthogonal protein decaging in living cells. Nat Chem Biol 10, 1003–1005 (2014). https://doi.org/10.1038/nchembio.1656

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1656

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing