Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice

Abstract

Severe forms of pneumococcal meningitis, bacteraemia and pneumonia result in more than 1 million deaths each year despite the widespread introduction of carbohydrate-protein conjugate vaccines against Streptococcus pneumoniae. Here we describe a new and highly efficient antipneumococcal vaccine design based on synthetic conjugation of S. pneumoniae capsule polysaccharides to the potent lipid antigen α-galactosylceramide, which stimulates invariant natural killer T (iNKT) cells when presented by the nonpolymorphic antigen-presenting molecule CD1d. Mice injected with the new lipid-carbohydrate conjugate vaccine produced high-affinity IgG antibodies specific for pneumococcal polysaccharides. Vaccination stimulated germinal center formation; accumulation of iNKT cells with a T follicular helper cell phenotype; and increased frequency of carbohydrate-specific, long-lived memory B cells and plasmablasts. This new lipid-carbohydrate vaccination strategy induced potent antipolysaccharide immunity that protected against pneumococcal disease in mice and may also prove effective for the design of carbohydrate-based vaccines against other major bacterial pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: iNKT cells are stimulated by CPS-αGC only in the presence of CD1d+ APC.
Figure 2: CD1d-dependent enhancement of antibody responses by CPS-αGC immunization.
Figure 3: Vaccination with CPS-αGC induced expansion of germinal centers.
Figure 4: Binding kinetics of S. pneumoniae CPS4 to specific monoclonal antibodies.
Figure 5: Both passive and active immunizations protect mice from S. pneumoniae.
Figure 6: CPS-αGC–induced generation of CPS-specific memory B cells and iNKTFH cells in vaccinated mice.

Similar content being viewed by others

References

  1. Chang, Q., Zhong, Z., Lees, A., Pekna, M. & Pirofski, L. Structure-function relationships for human antibodies to pneumococcal capsular polysaccharide from transgenic mice with human immunoglobulin Loci. Infect. Immun. 70, 4977–4986 (2002).

    Article  CAS  Google Scholar 

  2. Yarema, K.J. & Bertozzi, C.R. Chemical approaches to glycobiology and emerging carbohydrate-based therapeutic agents. Curr. Opin. Chem. Biol. 2, 49–61 (1998).

    Article  CAS  Google Scholar 

  3. Danishefsky, S.J. & Allen, J.R. From the laboratory to the clinic: a retrospective on fully synthetic carbohydrate-based anticancer vaccines frequently used abbreviations are listed in the appendix. Angew. Chem. Int. Edn Engl. 39, 836–863 (2000).

    Article  CAS  Google Scholar 

  4. Schofield, L., Hewitt, M.C., Evans, K., Siomos, M.A. & Seeberger, P.H. Synthetic GPI as a candidate anti-toxic vaccine in a model of malaria. Nature 418, 785–789 (2002).

    Article  CAS  Google Scholar 

  5. Verez-Bencomo, V. et al. A synthetic conjugate polysaccharide vaccine against Haemophilus influenzae type b. Science 305, 522–525 (2004).

    Article  CAS  Google Scholar 

  6. Slovin, S.F., Keding, S.J. & Ragupathi, G. Carbohydrate vaccines as immunotherapy for cancer. Immunol. Cell Biol. 83, 418–428 (2005).

    Article  CAS  Google Scholar 

  7. Vliegenthart, J.F. Carbohydrate based vaccines. FEBS Lett. 580, 2945–2950 (2006).

    Article  CAS  Google Scholar 

  8. Ingale, S., Wolfert, M.A., Gaekwad, J., Buskas, T. & Boons, G.J. Robust immune responses elicited by a fully synthetic three-component vaccine. Nat. Chem. Biol. 3, 663–667 (2007).

    Article  CAS  Google Scholar 

  9. Hecht, M.-L., Stallforth, P., Silva, D.V., Adibekian, A. & Seeberger, P.H. Recent advances in carbohydrate-based vaccines. Curr. Opin. Chem. Biol. 13, 354–359 (2009).

    Article  CAS  Google Scholar 

  10. Phalipon, A. et al. A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a infection. J. Immunol. 182, 2241–2247 (2009).

    Article  CAS  Google Scholar 

  11. Astronomo, R.D. & Burton, D.R. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat. Rev. Drug Discov. 9, 308–324 (2010).

    Article  CAS  Google Scholar 

  12. Goldblatt, D. Recent developments in bacterial conjugate vaccines. J. Med. Microbiol. 47, 563–567 (1998).

    Article  CAS  Google Scholar 

  13. Colino, J. et al. Parameters underlying distinct T cell–dependent polysaccharide-specific IgG responses to an intact Gram-positive bacterium versus a soluble conjugate vaccine. J. Immunol. 183, 1551–1559 (2009).

    Article  CAS  Google Scholar 

  14. Bogaert, D., De Groot, R. & Hermans, P.W.M. Streptococcus pneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4, 144–154 (2004).

    Article  CAS  Google Scholar 

  15. Miller, E., Andrews, N.J., Waight, P.A., Slack, M.P. & George, R.C. Herd immunity and serotype replacement 4 years after seven-valent pneumococcal conjugate vaccination in England and Wales: an observational cohort study. Lancet Infect. Dis. 11, 760–768 (2011).

    Article  CAS  Google Scholar 

  16. Weinberger, D.M., Malley, R. & Lipsitch, M. Serotype replacement in disease after pneumococcal vaccination. Lancet 378, 1962–1973 (2011).

    Article  Google Scholar 

  17. Johnson, D.R., D′Onise, K., Holland, R.A., Raupach, J.C.A. & Koehler, A.P. Pneumococcal disease in South Australia: vaccine success but no time for complacency. Vaccine 30, 2206–2211 (2012).

    Article  Google Scholar 

  18. Alexandre, C. et al. Rebound in the incidence of pneumococcal meningitis in northern France: effect of serotype replacement. Acta Paediatr. 99, 1686–1690 (2010).

    Article  CAS  Google Scholar 

  19. Tyo, K.R. et al. Cost-effectiveness of conjugate pneumococcal vaccination in Singapore: comparing estimates for 7-valent, 10-valent, and 13-valent vaccines. Vaccine 29, 6686–6694 (2011).

    Article  Google Scholar 

  20. Brandau, D.T., Jones, L.S., Wiethoff, C.M., Rexroad, J. & Middaugh, C.R. Thermal stability of vaccines. J. Pharm. Sci. 92, 218–231 (2003).

    Article  CAS  Google Scholar 

  21. van Gils, E.J.M. et al. Effect of reduced-dose schedules with 7-valent pneumococcal conjugate vaccine on nasopharyngeal pneumococcal carriage in children: a randomized controlled trial. J. Am. Med. Assoc. 302, 159–167 (2009).

    Article  CAS  Google Scholar 

  22. Russell, F.M. et al. Pneumococcal nasopharyngeal carriage following reduced doses of a 7-valent pneumococcal conjugate vaccine and a 23-valent pneumococcal polysaccharide vaccine booster. Clin. Vaccine Immunol. 17, 1970–1976 (2010).

    Article  CAS  Google Scholar 

  23. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  24. Gonzalez-Aseguinolaza, G. et al. Natural killer T cell ligand α-galactosylceramide enhances protective immunity induced by malaria vaccines. J. Exp. Med. 195, 617–624 (2002).

    Article  CAS  Google Scholar 

  25. Cerundolo, V., Silk, J.D., Masri, S.H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9, 28–38 (2009).

    Article  CAS  Google Scholar 

  26. Reilly, E.C. et al. Activated iNKT cells promote memory CD8+ T cell differentiation during viral infection. PLoS ONE 7, e37991 (2012).

    Article  CAS  Google Scholar 

  27. Richter, J. et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121, 423–430 (2013).

    Article  CAS  Google Scholar 

  28. Nagato, K. et al. Accumulation of activated invariant natural killer T cells in the tumor microenvironment after α-galactosylceramide–pulsed antigen presenting cells. J. Clin. Immunol. 32, 1071–1081 (2012).

    Article  CAS  Google Scholar 

  29. Zhou, X.-T. et al. Synthesis and NKT cell stimulating properties of fluorophore- and biotin-appended 6”-amino-6”-deoxy-galactosylceramides. Org. Lett. 4, 1267–1270 (2002).

    Article  CAS  Google Scholar 

  30. Kohn, J. & Wilchek, M. Mechanism of activation of Sepharose and Sephadex by cyanogen bromide. Enzyme Microb. Technol. 4, 161–163 (1982).

    Article  CAS  Google Scholar 

  31. Coughlin, R.T. et al. Characterization of pneumococcal specific antibodies in healthy unvaccinated adults. Vaccine 16, 1761–1767 (1998).

    Article  CAS  Google Scholar 

  32. Saeland, E. et al. Central role of complement in passive protection by human IgG1 and IgG2 anti-pneumococcal antibodies in mice. J. Immunol. 170, 6158–6164 (2003).

    Article  CAS  Google Scholar 

  33. Carnaud, C. et al. Cutting edge: cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J. Immunol. 163, 4647–4650 (1999).

    CAS  PubMed  Google Scholar 

  34. Fujii, S., Shimizu, K., Smith, C., Bonifaz, L. & Steinman, R.M. Activation of natural killer T cells by α-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J. Exp. Med. 198, 267–279 (2003).

    Article  CAS  Google Scholar 

  35. Tomayko, M.M., Steinel, N.C., Anderson, S.M. & Shlomchik, M.J. Cutting edge: Hierarchy of maturity of murine memory B cell subsets. J. Immunol. 185, 7146–7150 (2010).

    Article  CAS  Google Scholar 

  36. Yamashita, Y. et al. CD73 expression and fyn-dependent signaling on murine lymphocytes. Eur. J. Immunol. 28, 2981–2990 (1998).

    Article  CAS  Google Scholar 

  37. Anderson, S.M., Tomayko, M.M., Ahuja, A., Haberman, A.M. & Shlomchik, M.J. New markers for murine memory B cells that define mutated and unmutated subsets. J. Exp. Med. 204, 2103–2114 (2007).

    Article  CAS  Google Scholar 

  38. Chang, P.P. et al. Identification of Bcl-6–dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol. 13, 35–43 (2012).

    Article  CAS  Google Scholar 

  39. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    Article  CAS  Google Scholar 

  40. Fattom, A. et al. Epitopic overload at the site of injection may result in suppression of the immune response to combined capsular polysaccharide conjugate vaccines. Vaccine 17, 126–133 (1999).

    Article  CAS  Google Scholar 

  41. Avci, F.Y., Li, X., Tsuji, M. & Kasper, D.L. A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat. Med. 17, 1602–1609 (2011).

    Article  CAS  Google Scholar 

  42. King, I.L. et al. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21–dependent manner. Nat. Immunol. 13, 44–50 (2012).

    Article  CAS  Google Scholar 

  43. Dellabona, P., Abrignani, S. & Casorati, G. iNKT-cell help to B cells: a cooperative job between innate and adaptive immune responses. Eur. J. Immunol. 44, 2230–2237 (2014).

    Article  CAS  Google Scholar 

  44. Tonti, E. et al. Follicular helper NKT cells induce limited B cell responses and germinal center formation in the absence of CD4+ T cell help. J. Immunol. 188, 3217–3222 (2012).

    Article  CAS  Google Scholar 

  45. Bai, L. et al. Natural killer T (NKT)–B-cell interactions promote prolonged antibody responses and long-term memory to pneumococcal capsular polysaccharides. Proc. Natl. Acad. Sci. USA 110, 16097–16102 (2013).

    Article  CAS  Google Scholar 

  46. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  Google Scholar 

  47. Franchini, L. et al. Synthesis and evaluation of human T cell stimulating activity of an alpha-sulfatide analogue. Bioorg. Med. Chem. 15, 5529–5536 (2007).

    Article  CAS  Google Scholar 

  48. Kyriakakis, E. et al. Invariant natural killer T cells: linking inflammation and neovascularization in human atherosclerosis. Eur. J. Immunol. 40, 3268–3279 (2010).

    Article  CAS  Google Scholar 

  49. Smiley, S.T., Kaplan, M.H. & Grusby, M.J. Immunoglobulin E production in the absence of interleukin-4–secreting CD1-dependent cells. Science (New York, N.Y.) 275, 977–979 (1997).

    Article  CAS  Google Scholar 

  50. Facciotti, F. et al. Fine tuning by human CD1e of lipid-specific immune responses. Proc. Natl. Acad. Sci. USA 108, 14228–14233 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A.G. Rolink and D. Finke for materials and helpful discussions, R. Lange and S. Hammerschmidt for S. pneumoniae strains and C. Gärtner for help in preparing the tissue sections. We acknowledge the US National Institutes of Health Tetramer Core Facility (contract HHSN272201300006C) for provision of CD1d tetramers. This study was supported by European Union Framework Programme 7 grant CAREPNEUMO 223111 (to R.L. and G.D.L.), the Swiss National Science Foundation (310030_149571 and Sinergia CRS133-124819 to G.D.L.), a Scholarship of the Studienstiftung des deutschen Volkes (to P.S.), the Alexander von Humboldt Foundation for a postdoctoral research fellowship (to D.C.K.R.), Peter and Traudl Engerlhorn-Stiftung (to A.K.) and funding of the Max Planck Society (P.H.S.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors wish to thank L. Robinson and N. McCarthy of Insight Editing London for critical review and manuscript editing and A. K. for the artwork.

Author information

Authors and Affiliations

Authors

Contributions

M.C., P.S., R.L. P.H.S. and G.D.L. designed the experiments; M.C., P.S., A.K., D.C.K.R., T.M.A.G. and A.A. performed the research; M.C., P.S., D.C.K.R., A.K. and T.M.A.G. analyzed the data; and M.C., P.S., L.M., P.H.S. and G.D.L. wrote the paper.

Corresponding authors

Correspondence to Peter H Seeberger or Gennaro De Libero.

Ethics declarations

Competing interests

T.M.A.G. is an employer of SAW Instruments, Bonn. The other authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–4, Supplementary Figures 1–5 and Supplementary Note. (PDF 11157 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavallari, M., Stallforth, P., Kalinichenko, A. et al. A semisynthetic carbohydrate-lipid vaccine that protects against S. pneumoniae in mice. Nat Chem Biol 10, 950–956 (2014). https://doi.org/10.1038/nchembio.1650

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing