Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural insights into recognition of c-di-AMP by the ydaO riboswitch

Abstract

Bacterial second messenger cyclic di-AMP (c-di-AMP) is implicated in signaling DNA damage and cell wall stress through interactions with several protein receptors and a widespread ydaO-type riboswitch. We report the crystal structures of c-di-AMP riboswitches from Thermoanaerobacter pseudethanolicus and Thermovirga lienii determined at 3.0-Å resolution. In both species, the RNA adopts an unforeseen 'square'-shaped pseudosymmetrical architecture that features two three-way junctions, a turn and a pseudoknot, positioned in the square corners. Uncharacteristically for riboswitches, the structure is stapled by two ligand molecules that span the interior of the structure and employ similar noncanonical interactions for RNA recognition. Mutations in either ligand-binding site negatively affect c-di-AMP binding, suggesting that the riboswitch-triggered genetic response requires contribution of both ligands. Our data provide what are to our knowledge the first insights into specific sensing of c-di-AMP and a molecular mechanism underlying the common c-di-AMP–dependent control of essential cellular processes in bacteria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure and schematics of the T. pseudethanolicus c-di-AMP riboswitch.
Figure 2: Structural elements of the T. pseudethanolicus c-di-AMP riboswitch.
Figure 3: Recognition of c-di-AMP molecules by the T. pseudethanolicus riboswitch.
Figure 4: Binding of c-di-AMP molecules to the riboswitch.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Pesavento, C. & Hengge, R. Bacterial nucleotide-based second messengers. Curr. Opin. Microbiol. 12, 170–176 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Corrigan, R.M. & Grundling, A. Cyclic di-AMP: another second messenger enters the fray. Nat. Rev. Microbiol. 11, 513–524 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Witte, G., Hartung, S., Buttner, K. & Hopfner, K.P. Structural biochemistry of a bacterial checkpoint protein reveals diadenylate cyclase activity regulated by DNA recombination intermediates. Mol. Cell 30, 167–178 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Kamegaya, T., Kuroda, K. & Hayakawa, Y. Identification of a Streptococcus pyogenes SF370 gene involved in production of c-di-AMP. Nagoya J. Med. Sci. 73, 49–57 (2011).

    CAS  PubMed  Google Scholar 

  5. Oppenheimer-Shaanan, Y., Wexselblatt, E., Katzhendler, J., Yavin, E. & Ben-Yehuda, S. c-di-AMP reports DNA integrity during sporulation in Bacillus subtilis. EMBO Rep. 12, 594–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barker, J.R. et al. STING-dependent recognition of cyclic di-AMP mediates type I interferon responses during Chlamydia trachomatis infection. MBio 4, e00018–13 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corrigan, R.M., Abbott, J.C., Burhenne, H., Kaever, V. & Grundling, A. c-di-AMP is a new second messenger in Staphylococcus aureus with a role in controlling cell size and envelope stress. PLoS Pathog. 7, e1002217 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Woodward, J.J., Iavarone, A.T. & Portnoy, D.A. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328, 1703–1705 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corrigan, R.M. et al. Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc. Natl. Acad. Sci. USA 110, 9084–9089 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barrick, J.E. et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 101, 6421–6426 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watson, P.Y. & Fedor, M.J. The ydaO motif is an ATP-sensing riboswitch in Bacillus subtilis. Nat. Chem. Biol. 8, 963–965 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Nelson, J.W. et al. Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat. Chem. Biol. 9, 834–839 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Block, K.F., Hammond, M.C. & Breaker, R.R. Evidence for widespread gene control function by the ydaO riboswitch candidate. J. Bacteriol. 192, 3983–3989 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lescoute, A. & Westhof, E. Topology of three-way junctions in folded RNAs. RNA 12, 83–93 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hainzl, T., Huang, S. & Sauer-Eriksson, A.E. Structure of the SRP19 RNA complex and implications for signal recognition particle assembly. Nature 417, 767–771 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J.C., Gutell, R.R. & Russell, R. The UAA/GAN internal loop motif: a new RNA structural element that forms a cross-strand AAA stack and long-range tertiary interactions. J. Mol. Biol. 360, 978–988 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Jaeger, L., Verzemnieks, E.J. & Geary, C. The UA_handle: a versatile submotif in stable RNA architectures. Nucleic Acids Res. 37, 215–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wadley, L.M. & Pyle, A.M. The identification of novel RNA structural motifs using COMPADRES: an automated approach to structural discovery. Nucleic Acids Res. 32, 6650–6659 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kang, M., Peterson, R. & Feigon, J. Structural insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol. Cell 33, 784–790 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Serganov, A. & Nudler, E. A decade of riboswitches. Cell 152, 17–24 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sudarsan, N. et al. Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, E.R., Baker, J.L., Weinberg, Z., Sudarsan, N. & Breaker, R.R. An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science 329, 845–848 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kulshina, N., Baird, N.J. & Ferre-D'Amare, A.R. Recognition of the bacterial second messenger cyclic diguanylate by its cognate riboswitch. Nat. Struct. Mol. Biol. 16, 1212–1217 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, K.D. et al. Structural basis of ligand binding by a c-di-GMP riboswitch. Nat. Struct. Mol. Biol. 16, 1218–1223 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Smith, K.D., Shanahan, C.A., Moore, E.L., Simon, A.C. & Strobel, S.A. Structural basis of differential ligand recognition by two classes of bis-(3′-5′)-cyclic dimeric guanosine monophosphate-binding riboswitches. Proc. Natl. Acad. Sci. USA 108, 7757–7762 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Serganov, A., Huang, L. & Patel, D.J. Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature 458, 233–237 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dann, C.E. III et al. Structure and mechanism of a metal-sensing regulatory RNA. Cell 130, 878–892 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Trausch, J.J., Ceres, P., Reyes, F.E. & Batey, R.T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19, 1413–1423 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mandal, M. et al. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306, 275–279 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Huang, L., Serganov, A. & Patel, D.J. Structural insights into ligand recognition by a sensing domain of the cooperative glycine riboswitch. Mol. Cell 40, 774–786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Butler, E.B., Xiong, Y., Wang, J. & Strobel, S.A. Structural basis of cooperative ligand binding by the glycine riboswitch. Chem. Biol. 18, 293–298 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Serganov, A. & Patel, D.J. Metabolite recognition principles and molecular mechanisms underlying riboswitch function. Annu. Rev. Biophys. 41, 343–370 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren, A., Rajashankar, K.R. & Patel, D.J. Fluoride ion encapsulation by Mg2+ ions and phosphates in a fluoride riboswitch. Nature 486, 85–89 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klein, D.J., Edwards, T.E. & Ferre-D'Amare, A.R. Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat. Struct. Mol. Biol. 16, 343–344 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Roth, A. et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat. Struct. Mol. Biol. 14, 308–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Liberman, J.A., Salim, M., Krucinska, J. & Wedekind, J.E. Structure of a class II preQ1 riboswitch reveals ligand recognition by a new fold. Nat. Chem. Biol. 9, 353–355 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Montange, R.K. & Batey, R.T. Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature 441, 1172–1175 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Serganov, A., Polonskaia, A., Phan, A.T., Breaker, R.R. & Patel, D.J. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature 441, 1167–1171 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thore, S., Leibundgut, M. & Ban, N. Structure of the eukaryotic thiamine pyrophosphate riboswitch with its regulatory ligand. Science 312, 1208–1211 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Edwards, T.E. & Ferre-D'Amare, A.R. Crystal structures of the Thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure 14, 1459–1468 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Peselis, A. & Serganov, A. Themes and variations in riboswitch structure and function. Biochim. Biophys. Acta 10.1016/j.bbagrm.2014.02.012 (28 February 2014).

  44. Doherty, E.A., Batey, R.T., Masquida, B. & Doudna, J.A. A universal mode of helix packing in RNA. Nat. Struct. Biol. 8, 339–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Wickiser, J.K., Winkler, W.C., Breaker, R.R. & Crothers, D.M. The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol. Cell 18, 49–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Serganov, A., Huang, L. & Patel, D.J. Structural insights into amino acid binding and gene control by a lysine riboswitch. Nature 455, 1263–1267 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Garst, A.D., Heroux, A., Rambo, R.P. & Batey, R.T. Crystal structure of the lysine riboswitch regulatory mRNA element. J. Biol. Chem. 283, 22347–22351 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Serganov, A. et al. Ribosomal protein S15 from Thermus thermophilus—cloning, sequencing, overexpression of the gene and RNA-binding properties of the protein. Eur. J. Biochem. 246, 291–300 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Pikovskaya, O., Serganov, A.A., Polonskaia, A., Serganov, A. & Patel, D.J. Preparation and crystallization of riboswitch-ligand complexes. Methods Mol. Biol. 540, 115–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  PubMed  Google Scholar 

  51. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the personnel of beamlines X25 at the Brookhaven National Laboratory and 24-ID at the Argonne National Laboratory funded by the US Department of Energy. We thank O. Ouerfelli for the synthesis of iridium hexamine and L. Jaeger for discussions. A.S. was supported by funds from the New York University School of Medicine.

Author information

Authors and Affiliations

Authors

Contributions

A.G. crystallized the riboswitches, determined their structures and conducted ITC experiments. A.G. and A.S. refined the structures and wrote the manuscript.

Corresponding author

Correspondence to Alexander Serganov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–11. (PDF 9539 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, A., Serganov, A. Structural insights into recognition of c-di-AMP by the ydaO riboswitch. Nat Chem Biol 10, 787–792 (2014). https://doi.org/10.1038/nchembio.1607

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1607

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing