Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex

Abstract

Phosphatidylinositol bisphosphate (PIP2) regulates the activities of many membrane proteins, including ion channels, through direct interactions. However, the affinity of PIP2 is so high for some channel proteins that its physiological role as a modulator has been questioned. Here we show that PIP2 is a key cofactor for activation of small conductance Ca2+-activated potassium channels (SKs) by Ca2+-bound calmodulin (CaM). Removal of the endogenous PIP2 inhibits SKs. The PIP2-binding site resides at the interface of CaM and the SK C terminus. We further demonstrate that the affinity of PIP2 for its target proteins can be regulated by cellular signaling. Phosphorylation of CaM T79, located adjacent to the PIP2-binding site, by casein kinase 2 reduces the affinity of PIP2 for the CaM–SK channel complex by altering the dynamic interactions among amino acid residues surrounding the PIP2-binding site. This effect of CaM phosphorylation promotes greater channel inhibition by G protein–mediated hydrolysis of PIP2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PIP2 is an essential cofactor for activation of SK2 channels by Ca2+.
Figure 2: The PIP2-binding site resides at the interface of the CaM–SK complex.
Figure 3: Phosphorylation of CaM T79 by CK2 enhances inhibition of SK channels by PIP2.
Figure 4: The phosphomimetic CaM mutant T79D mimics the effect of phosphorylation by CK2.
Figure 5: Phosphorylation of T79 of CaM disrupts the interaction between PIP2 and its binding site and reduces the apparent affinity of PIP2 for the CaM–SK2 complex.
Figure 6: CaM T79 phosphorylation facilitates modulation of SK2 by PIP2 hydrolysis triggered by stimulation of a GPCR, hMR1.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Suh, B.-C. & Hille, B. PIP2 is a necessary cofactor for ion channel function: How and Why? Annu. Rev. Biophys. 37, 175–195 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Delmas, P. & Brown, D.A. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat. Rev. Neurosci. 6, 850–862 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Logothetis, D., Petrou, V., Adney, S. & Mahajan, R. Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch. 460, 321–341 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tucker, S.J. & Baukrowitz, T. How highly charged anionic lipids bind and regulate ion channels. J. Gen. Physiol. 131, 431–438 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Michailidis, I.E. et al. Phosphatidylinositol-4,5-bisphosphate regulates epidermal growth factor receptor activation. Pflugers Arch. 461, 387–397 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Hernandez, C.C., Zaika, O., Tolstykh, G.P. & Shapiro, M.S. Regulation of neural KCNQ channels: signalling pathways, structural motifs and functional implications. J. Physiol. (Lond.) 586, 1811–1821 (2008).

    Article  CAS  Google Scholar 

  7. Roberts-Crowley, M.L., Mitra-Ganguli, T., Liu, L. & Rittenhouse, A.R. Regulation of voltage-gated Ca2+ channels by lipids. Cell Calcium 45, 589–601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenhouse-Dantsker, A. & Logothetis, D. Molecular characteristics of phosphoinositide binding. Pflugers Arch. 455, 45–53 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Kruse, M., Hammond, G.R. & Hille, B. Regulation of voltage-gated potassium channels by PI(4,5)P2 . J. Gen. Physiol. 140, 189–205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Köhler, M. et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273, 1709–1714 (1996).

    Article  PubMed  Google Scholar 

  11. Faber, E.S.L. & Sah, P. Functions of SK channels in central neurons. Clin. Exp. Pharmacol. Physiol. 34, 1077–1083 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Stocker, M. Ca2+-activated K+ channels: molecular determinants and function of the SK family. Nat. Rev. Neurosci. 5, 758–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Xu, Y. et al. Molecular identification and functional roles of a Ca2+-activated K+ channel in human and mouse hearts. J. Biol. Chem. 278, 49085–49094 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Adelman, J.P., Maylie, J. & Sah, P. Small-conductance Ca2+-activated K+ channels: form and function. Annu.Rev. Physiol. 74, 245–269 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Giessel, A.J. & Sabatini, B.L. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron 68, 936–947 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maingret, F. et al. Neurotransmitter modulation of small-conductance Ca2+-activated K+ channels by regulation of Ca2+ gating. Neuron 59, 439–449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Buchanan, K.A., Petrovic, M.M., Chamberlain, S.E.L., Marrion, N.V. & Mellor, J.R. Facilitation of long-term potentiation by muscarinic M1 receptors is mediated by inhibition of SK channels. Neuron 68, 948–963 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faber, E.S.L. Functional interplay between NMDA receptors, SK channels and voltage-gated Ca2+ channels regulates synaptic excitability in the medial prefrontal cortex. J. Physiol. (Lond.) 588, 1281–1292 (2010).

    Article  CAS  Google Scholar 

  19. Mpari, B., Sreng, L., Manrique, C. & Mourre, C. KCa2 channels transiently downregulated during spatial learning and memory in rats. Hippocampus 20, 352–363 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Kramár, E.A. et al. A novel mechanism for the facilitation of φ-induced long-term potentiation by brain-derived neurotrophic factor. J. Neurosci. 24, 5151–5161 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stackman, R.W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22, 10163–10171 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McKay, B.M., Oh, M.M. & Disterhoft, J.F. Learning increases intrinsic excitability of hippocampal interneurons. J. Neurosci. 33, 5499–5506 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Garland, C.J. Compromised vascular endothelial cell SKCa activity: a fundamental aspect of hypertension? Br. J. Pharmacol. 160, 833–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Köhler, R. Single-nucleotide polymorphisms in vascular Ca2+ activated K+-channel genes and cardiovascular disease. Pflugers Arch. 460, 343–351 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Allen, D. et al. SK2 channels are neuroprotective for ischemia-induced neuronal cell death. J. Cereb. Blood Flow Metab. 31, 2302–2312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chou, C.C., Lunn, C.A. & Murgolo, N.J. KCa3.1: target and marker for cancer, autoimmune disorder and vascular inflammation? Expert Rev. Mol. Diagn. 8, 179–187 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Kasumu, A.W. et al. Selective positive modulator of calcium-activated potassium channels exerts beneficial effects in a mouse model of spinocerebellar ataxia type 2. Chem. Biol. 19, 1340–1353 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, M. et al. Structural basis for calmodulin as a dynamic calcium sensor. Structure 20, 911–923 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xia, X.M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Zhang, M., Pascal, J.M. & Zhang, J.F. Unstructured to structured transition of an intrinsically disordered protein peptide in coupling Ca2+-sensing and SK channel activation. Proc. Natl. Acad. Sci. USA 110, 4828–4833 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Allen, D., Fakler, B., Maylie, J. & Adelman, J.P. Organization and regulation of small conductance Ca2+-activated K+ channel multiprotein complexes. J. Neurosci. 27, 2369–2376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bildl, W. et al. Protein kinase CK2 is coassembled with small conductance Ca2+-activated K+ channels and regulates channel gating. Neuron 43, 847–858 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Wagner, E.J., Rønnekleiv, O.K. & Kelly, M.J. The noradrenergic inhibition of an apamin-sensitive, small-conductance Ca2+-activated K+ channel in hypothalamic γ-aminobutyric acid neurons: pharmacology, estrogen sensitivity, and relevance to the control of the reproductive axis. J. Pharmacol. Exp. Ther. 299, 21–30 (2001).

    CAS  PubMed  Google Scholar 

  34. Zhang, M., Pascal, J.M., Schumann, M., Armen, R.S. & Zhang, J.F. Identification of the functional binding pocket for compounds targeting small-conductance Ca2+-activated potassium channels. Nat. Commun. 3, 1021 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, H. et al. PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37, 963–975 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Rohács, T. et al. Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc. Natl. Acad. Sci. USA 100, 745–750 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosenhouse-Dantsker, A. et al. A sodium-mediated structural switch that controls the sensitivity of Kir channels to PtdIns(4,5)P2 . Nat. Chem. Biol. 4, 624–631 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hansen, S.B., Tao, X. & MacKinnon, R. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477, 495–498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Pedarzani, P. et al. Specific enhancement of SK channel activity selectively potentiates the afterhyperpolarizing current IAHP and modulates the firing properties of hippocampal pyramidal neurons. J. Biol. Chem. 280, 41404–41411 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Horn, R. Electrifying phosphatases. Sci. STKE 2005, pe50 (2005).

    PubMed  Google Scholar 

  42. Iwasaki, H. et al. A voltage-sensing phosphatase, Ci-VSP, which shares sequence identity with PTEN, dephosphorylates phosphatidylinositol 4,5-bisphosphate. Proc. Natl. Acad. Sci. USA 105, 7970–7975 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Henzler-Wildman, K. & Kern, D. Dynamic personalities of proteins. Nature 450, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Kobilka, B.K. Structural insights into adrenergic receptor function and pharmacology. Trends Pharmacol. Sci. 32, 213–218 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Rosenbaum, D.M., Rasmussen, S.G.F. & Kobilka, B.K. The structure and function of G protein–coupled receptors. Nature 459, 356–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nygaard, R?. et al. The dynamic process of β2-adrenergic receptor activation. Cell 152, 532–542 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martina, M., Turcotte, M.-E.B., Halman, S. & Bergeron, R. The σ-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J. Physiol. (Lond.) 578, 143–157 (2007).

    Article  CAS  Google Scholar 

  48. Hammond, R.S. et al. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity. J. Neurosci. 26, 1844–1853 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blank, T., Nijholt, I., Kye, M.-J., Radulovic, J. & Spiess, J. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nat. Neurosci. 6, 911–912 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Winter, G. Xia2: an expert system for macromolecular crystallography data reduction. J. Appl. Crystallogr. 43, 186–190 (2010).

    Article  CAS  Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  52. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  53. Adams, P.D et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Peralta, E.G., Ashkenazi, A., Winslow, J.W., Ramachandran, J. & Capon, D.J. Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334, 434–437 (1988).

    Article  CAS  PubMed  Google Scholar 

  56. Morris, G.M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662 (1998).

    Article  CAS  Google Scholar 

  57. Breneman, C.M. & Wiberg, K.B. Determining atom-centered monopoles from molecular electrostatic potentials—the need for high sampling density in formamide conformational analysis. J. Comput. Chem. 11, 361–373 (1990).

    Article  CAS  Google Scholar 

  58. Frisch, M.J. et al. Gaussian 98 (Gaussian, Inc., 2001).

  59. Meng, X.-Y., Zhang, H.-X., Logothetis, D.E. & Cui, M. The Molecular mechanism by which PIP2opens the intracellular G-loop gate of a Kir3.1 channel. Biophys. J. 102, 2049–2059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bowers, K.J. et al. in Proceedings of the ACM/IEEE Conference on Supercomputing (SC06) 11–17 (2006).

Download references

Acknowledgements

We thank J. Adelman, R. Horn, I. Levitan and S. Siegelbaum for their helpful discussions and comments on this work. We thank M. Eto for advice on the in vitro phosphorylation assay. We thank J.P. Bennett Jr. and L. O'Brien for sharing their mammalian cell patch clamp setup. We are grateful to H. Vaananen for technical assistance. We thank I.S. Ramsey for the HEK-293 stably transfected cell line with the muscarinic M1 receptor, the structural facility of the Kimmel Cancer Center of Thomas Jefferson University for access of equipment in initial protein crystal screening and initial in-house X-ray diffraction; staff at the Beamline facility (X6A) of the Brookhaven National labs for assistance with collection of X-ray diffraction data. The use of the National Synchrotron Light Source, Brookhaven National Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-98CH10886. This work was partly supported by grants 13SDG16150007 from the American Heart Association to M.Z., S10RR027411 from the US National Institutes of Health (NIH) to M.C., HL059949 and HL090882 from NIH to D.E.L. and R01MH073060 and R01NS39355 from NIH to J.F.Z.

Author information

Authors and Affiliations

Authors

Contributions

M.Z., D.E.L. and J.-F.Z. designed the experiments. M.Z. performed electrophysiology and biochemistry experiments and carried them out. X.-Y.M. and M.C. performed the docking and MD simulations. M.Z., J.-F.Z. and J.M.P. performed experiments of X-ray crystallography. M.Z. and J.-F.Z. analyzed the data, made figures and wrote the first draft of the manuscript. All of the authors participated in revising the first draft into its final form.

Corresponding authors

Correspondence to Diomedes E Logothetis or Ji-Fang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–8 and Supplementary Table 1 (PDF 1719 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Meng, XY., Cui, M. et al. Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex. Nat Chem Biol 10, 753–759 (2014). https://doi.org/10.1038/nchembio.1592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing