Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana

Abstract

Jasmonates are lipid-derived plant hormones that regulate plant defenses and numerous developmental processes. Although the biosynthesis and molecular function of the most active form of the hormone, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), have been unraveled, it remains poorly understood how the diversity of bioactive jasmonates regulates such a multitude of plant responses. Bioactive analogs have been used as chemical tools to interrogate the diverse and dynamic processes of jasmonate action. By contrast, small molecules impairing jasmonate functions are currently unknown. Here, we report on jarin-1 as what is to our knowledge the first small-molecule inhibitor of jasmonate responses that was identified in a chemical screen using Arabidopsis thaliana. Jarin-1 impairs the activity of JA-Ile synthetase, thereby preventing the synthesis of the active hormone, JA-Ile, whereas closely related enzymes are not affected. Thus, jarin-1 may serve as a useful chemical tool in search for missing regulatory components and further dissection of the complex jasmonate signaling networks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification and characterization of jarin-1.
Figure 2: Jarin-1 inhibits degradation of the transcriptional repressor protein JAZ1 initiated by JAMe treatment.
Figure 3: Jarin-1 selectively inhibits enzymatic activity of JAR1.
Figure 4: Jarin-1 inhibits production of JA-Ile in Arabidopsis leaves.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Kazan, K. & Manners, J.M. Jasmonate signaling: toward an integrated view. Plant Physiol. 146, 1459–1468 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wasternack, C. & Hause, B. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Ann. Bot. 111, 1021–1058 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Staswick, P.E. & Tiryaki, I. The oxylipin signal jasmonic acid is activated by an enzyme that conjugates it to isoleucine in Arabidopsis. Plant Cell 16, 2117–2127 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miersch, O., Neumerkel, J., Dippe, M., Stenzel, I. & Wasternack, C. Hydroxylated jasmonates are commonly occuring metabolites of jasmonic acid and contribute to a partial switch-off in jasmonate signaling. New Phytol. 117, 114–127 (2008).

    Article  CAS  Google Scholar 

  5. Koo, A.J. & Howe, G.A. Catabolism and deactivation of the lipid-derived hormone jasmonoyl-isoleucine. Front. Plant Sci. 3, 19 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kombrink, E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. Planta 236, 1351–1366 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Lorenzo, O., Chico, J.M., Sánchez-Serrano, J.J. & Solano, R. JASMONATE-INSENSITIVE1 encodes a MYC transcription factor essential to discriminate between different jasmonate-regulated defense responses in Arabidopsis. Plant Cell 16, 1938–1950 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dombrecht, B. et al. MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19, 2225–2245 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fonseca, S. et al. (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Thines, B. et al. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448, 661–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Chini, A. et al. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448, 666–671 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, Y. et al. A downstream mediator in the growth repression limb of the jasmonate pathway. Plant Cell 19, 2470–2483 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Glauser, G. et al. Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J. Biol. Chem. 283, 16400–16407 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Chung, H.S. et al. Regulation and function of Arabidopsis JASMONATE ZIM-domain genes in response to wounding and herbivory. Plant Physiol. 146, 952–964 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sheard, L.B. et al. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468, 400–405 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Katsir, L., Schilmiller, A.L., Staswick, P.E., He, S.Y. & Howe, G.A. COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc. Natl. Acad. Sci. USA 105, 7100–7105 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santner, A. & Estelle, M. Recent advances and emerging trends in plant hormone signalling. Nature 459, 1071–1078 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Heitz, T. et al. Cytochromes P450 CYP94C1 and CYP94B3 catalyze two successive oxidation steps of plant hormone jasmonoyl-isoleucine for catabolic turnover. J. Biol. Chem. 287, 6296–6306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Widemann, E. et al. The amidohydrolases IAR3 and ILL6 contribute to jasmonoyl-isoleucine hormone turnover and generate 12-hydroxy-jasmonic acid upon wounding in Arabidopsis leaves. J. Biol. Chem. 288, 31701–31714 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glauser, G. et al. Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J. Biol. Chem. 284, 34506–34513 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Browse, J. The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70, 1539–1546 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. McCourt, P. & Desveaux, D. Plant chemical genetics. New Phytol. 185, 15–26 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Hicks, G.R. & Raikhel, N.V. Small molecules present large opportunities in plant biology. Annu. Rev. Plant Biol. 63, 261–282 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Armstrong, J.I., Yuan, S., Dale, J.M., Tanner, V.N. & Theologis, A. Identification of inhibitors of auxin transcriptional activation by means of chemical genetics in Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 14978–14983 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Park, S.-Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin, L.-C., Hsu, J.-H. & Wang, L.-C. Identification of novel inhibitors of 1-aminocyclopropane-1-carboxylic acid synthase by chemical screening in Arabidopsis thaliana. J. Biol. Chem. 285, 33445–33456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. De Rybel, B. et al. Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates brassinosteroid signaling. Chem. Biol. 16, 594–604 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. De Rybel, B. et al. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat. Chem. Biol. 8, 798–805 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meesters, C. & Kombrink, E. in Plant Chemical Genomics: Methods and Protocols, Methods in Molecular Biology Vol. 1056 (eds. Glenn R. Hicks & Stéphanie Robert) 19–31 (Humana Press, 2014).

  30. Jensen, A.B., Raventos, D. & Mundy, J. Fusion genetic analysis of jasmonate-signalling mutants in Arabidopsis. Plant J. 29, 595–606 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Serrano, M., Hubert, D.A., Dangl, J.L., Schulze-Lefert, P. & Kombrink, E. A chemical screen for suppressors of the avrRpm1–RPM1-dependent hypersensitive cell death response in Arabidopsis thaliana. Planta 231, 1013–1023 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Darrouzet, E., Issartel, J.-P., Lunardi, J. & Dupuis, A. The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett. 431, 34–38 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Ellis, C. & Turner, J.G. The Arabidopsis mutant cev1 has constitutively active jasmonate and ethylene signal pathways and enhanced resistance to pathogens. Plant Cell 13, 1025–1033 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Serrano, M. et al. Chemical interference of pathogen-associated molecular pattern-triggered immune responses in Arabidopsis reveals a potential role for fatty-acid synthase type II complex-derived lipid signals. J. Biol. Chem. 282, 6803–6811 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bartsch, M. et al. Accumulation of isochorismate-derived 2,3-dihydroxybenzoic 3-O-β-d-xyloside in Arabidopsis resistance to pathogens and ageing of leaves. J. Biol. Chem. 285, 25654–25665 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shan, X., Zhang, Y., Peng, W., Wang, Z. & Xie, D. Molecular mechanism for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp. Bot. 60, 3849–3860 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Groll, M. et al. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452, 755–758 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Yan, J. et al. The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220–2236 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, Q., Westfall, C.S., Hicks, L.M., Wang, S. & Jez, J.M. Kinetic basis for the conjugation of auxin by a GH3 family indole–acetic acid–amido synthetase. J. Biol. Chem. 285, 29780–29786 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Westfall, C.S. et al. Structural basis for prereceptor modulation of plant hormones by GH3 proteins. Science 336, 1708–1711 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Vergnolle, O., Xu, H. & Blanchard, J.S. Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33. J. Biol. Chem. 288, 28116–28125 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Staswick, P.E., Tiryaki, I. & Rowe, M.L. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell 14, 1405–1415 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shockey, J.M., Fulda, M.S. & Browse, J. Arabidopsis contains a large superfamily of acyl-activating enzymes. Phylogenetic and biochemical analysis reveals a new class of acyl-coenzyme A synthetases. Plant Physiol. 132, 1065–1076 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Staswick, P.E. et al. Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17, 616–627 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suza, W.P. & Staswick, P. The role of JAR1 in jasmonoyl-l-isoleucine production during Arabidopsis wound response. Planta 227, 1221–1232 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Westfall, C.S., Muehler, A.M. & Jez, J.M. Enzyme action in the regulation of plant hormone responses. J. Biol. Chem. 288, 19304–19311 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Noutoshi, Y. et al. Novel plant immune-priming compounds identified via high-throughput chemical screening target salicylic acid glucosyltransferases in Arabidopsis. Plant Cell 24, 3795–3804 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. He, W. et al. A small-molecule screen identifies l-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23, 3944–3960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Okrent, R.A. & Wildermuth, M.C. Evolutionary history of the GH3 family of acyl adenylases in rosids. Plant Mol. Biol. 76, 489–505 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Walsh, T.A. et al. Chemical genetic identification of glutamine phosphoribosylpyrophosphate amidotransferase as the target for a novel bleaching herbicide in Arabidopsis. Plant Physiol. 144, 1292–1304 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng, W. et al. Bestatin, an inhibitor of aminopeptidases, provides a chemical genetics approach to dissect jasmonate signaling in Arabidopsis. Plant Physiol. 141, 1400–1413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ulmasov, T., Murfett, J., Hagen, G. & Guilfoyle, T.J. Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9, 1963–1971 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Gray, W.M., Kepinski, S., Rouse, D., Leyser, O. & Estelle, M. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414, 271–276 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  55. Kienow, L. et al. Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase protein family from Arabidopsis thaliana. J. Exp. Bot. 59, 403–419 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Schmittgen, T.D. & Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Schön, M. et al. Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Mol. Plant Microbe Interact. 26, 758–767 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Czechowski, T., Stitt, M., Altmann, T., Udvardi, M.K. & Scheible, W.-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139, 5–17 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Balcke, G.U. et al. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. Plant Methods 8, 47 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Trott, O. & Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Somssich, C. Wasternack and members of our labs for critical reading of the manuscript and stimulating discussions. We also thank R. Solano (Universidad Autónoma, Madrid, Spain) for kindly providing seeds of the transgenic plant expressing CaMV35SJAZ1-GUS and J. Mundy (University of Copenhagen, Denmark) for seeds of plants harboring the dual reporter system LOX2pLUC/LOX2pGUS. This work was supported by the Max Planck Society (to E.K.), the Deutsche Forschungsgemeinschaft (DFG, Ko1192/6-1/2/3 to E.K.) and a European Research Council Starting grant (grant no. 258413 to M.K.). C.M. was the recipient of an International Max Planck Research School doctoral fellowship (Max Planck Institute for Plant Breeding Research, Köln). Additional support was provided by the National Science Foundation (MCB-1157771 to J.M.J.) and the United States Department of Agriculture–National Institute of Food and Agriculture Predoctoral Fellowship Program (MOW-2010-05240 to C.S.W.).

Author information

Authors and Affiliations

Authors

Contributions

C.M. performed the chemical screens and all of the biochemical (chemical biology) work leading to target identification, including enzyme kinetics of JAR1. T.M. and J.O. synthesized jarin-1, JA-Ile and other derivatives; D.K. performed proteasome assays; C.S.W. and J.M.J. performed enzyme activity assays and crystallographic and docking studies; B.H. determined jasmonate levels; E.K., M.K., C.M. and J.M.J. conceived experiments, analyzed data and wrote the manuscript.

Corresponding authors

Correspondence to Markus Kaiser or Erich Kombrink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1 and 2, Supplementary Figures 1–19 and Supplementary Note. (PDF 43154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meesters, C., Mönig, T., Oeljeklaus, J. et al. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 10, 830–836 (2014). https://doi.org/10.1038/nchembio.1591

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1591

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research