How to control proteins with light in living systems

Abstract

The possibility offered by photocontrolling the activity of biomolecules in vivo while recording physiological parameters is opening up new opportunities for the study of physiological processes at the single-cell level in a living organism. For the last decade, such tools have been mainly used in neuroscience, and their application in freely moving animals has revolutionized this field. New photochemical approaches enable the control of various cellular processes by manipulating a wide range of protein functions in a noninvasive way and with unprecedented spatiotemporal resolution. We are at a pivotal moment where biologists can adapt these cutting-edge technologies to their system of study. This user-oriented review presents the state of the art and highlights technical issues to be resolved in the near future for wide and easy use of these powerful approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Using light to control proteins in living systems.
Figure 2: Light control of proteins with genetically encoded photoactuators.
Figure 3: Light absorption for photoactivation.
Figure 4: Light control of proteins with chemical and genetic hybrid photoactuators.

References

  1. 1

    Miesenböck, G. The optogenetic catechism. Science 326, 395–399 (2009). A review that clearly defines two aspects of optogenetics, i.e., the actuators that deliver controlled perturbation and the sensors that report the system response back.

    PubMed  Google Scholar 

  2. 2

    Fenno, L., Yizhar, O. & Deisseroth, K. The development and application of optogenetics. Annu. Rev. Neurosci. 34, 389–412 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Sasaki, J. et al. Conversion of bacteriorhodopsin into a chloride ion pump. Science 269, 73–75 (1995).

    CAS  PubMed  Google Scholar 

  4. 4

    Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    CAS  Google Scholar 

  5. 5

    Zhang, F. et al. The microbial opsin family of optogenetic tools. Cell 147, 1446–1457 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  Google Scholar 

  7. 7

    Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signalling. Nature 458, 1025–1029 (2009).

    CAS  PubMed  Google Scholar 

  8. 8

    Oh, E., Maejima, T., Liu, C., Deneris, E. & Herlitze, S. Substitution of 5-HT1A receptor signaling by a light-activated G protein–coupled receptor. J. Biol. Chem. 285, 30825–30836 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Zhao, S. et al. Cell type-specific channelrhodopsin-2 transgenic mice for optogenetic dissection of neural circuitry function. Nat. Methods 8, 745–752 (2011).The combination of light and specific promoters to express optogenetic probes makes it possible to manipulate a subset of cells in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Lee, S., Kruglikov, I., Huang, Z.J., Fishell, G. & Rudy, B. A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat. Neurosci. 16, 1662–1670 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11

    Inagaki, H.K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325–332 (2014).

    CAS  PubMed  Google Scholar 

  12. 12

    Kolisnyk, B. et al. ChAT-ChR2-EYFP mice have enhanced motor endurance but show deficits in attention and several additional cognitive domains. J. Neurosci. 33, 10427–10438 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Abbott, S.B. et al. Selective optogenetic activation of rostral ventrolateral medullary catecholaminergic neurons produces cardiorespiratory stimulation in conscious mice. J. Neurosci. 33, 3164–3177 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Arrenberg, A.B., Stainier, D.Y., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    CAS  PubMed  Google Scholar 

  15. 15

    Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    CAS  PubMed  Google Scholar 

  16. 16

    Stroh, A. et al. Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29, 78–88 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17

    Christie, J.M., Gawthorne, J., Young, G., Fraser, N.J. & Roe, A.J. LOV to BLUF: flavoprotein contributions to the optogenetic toolkit. Mol. Plant 5, 533–544 (2012).

    Google Scholar 

  18. 18

    Chaves, I. et al. The cryptochromes: blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364 (2011).

    CAS  Google Scholar 

  19. 19

    Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Shimizu-Sato, S., Huq, E., Tepperman, J.M. & Quail, P.H. A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044 (2002).

    CAS  Google Scholar 

  21. 21

    Strickland, D., Moffat, K. & Sosnick, T.R. Light-activated DNA binding in a designed allosteric protein. Proc. Natl. Acad. Sci. USA 105, 10709–10714 (2008).

    CAS  PubMed  Google Scholar 

  22. 22

    Yazawa, M., Sadaghiani, A.M., Hsueh, B. & Dolmetsch, R.E. Induction of protein-protein interactions in live cells using light. Nat. Biotechnol. 27, 941–945 (2009).

    CAS  Google Scholar 

  23. 23

    Kennedy, M.J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Wang, X., Chen, X. & Yang, Y. Spatiotemporal control of gene expression by a light-switchable transgene system. Nat. Methods 9, 266–269 (2012).

    CAS  Google Scholar 

  25. 25

    Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Imayoshi, I. et al. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342, 1203–1208 (2013). The accurate control of gene expression with light demonstrates the importance of oscillatory versus sustained expression in cell fate.

    CAS  Google Scholar 

  27. 27

    Toettcher, J.E., Gong, D., Lim, W.A. & Weiner, O.D. Light-based feedback for controlling intracellular signaling dynamics. Nat. Methods 8, 837–839 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Chen, D., Gibson, E.S. & Kennedy, M.J. A light-triggered protein secretion system. J. Cell Biol. 201, 631–640 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Lee, J. et al. Surface sites for engineering allosteric control in proteins. Science 322, 438–442 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Stierl, M. et al. Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J. Biol. Chem. 286, 1181–1188 (2011).

    CAS  Google Scholar 

  31. 31

    Raffelberg, S. et al. A LOV-domain–mediated blue-light–activated adenylate (adenylyl) cyclase from the cyanobacterium Microcoleus chthonoplastes PCC 7420. Biochem. J. 455, 359–365 (2013).

    CAS  PubMed  Google Scholar 

  32. 32

    Leung, D.W., Otomo, C., Chory, J. & Rosen, M.K. Genetically encoded photoswitching of actin assembly through the Cdc42–WASP–Arp2/3 complex pathway. Proc. Natl. Acad. Sci. USA 105, 12797–12802 (2008).

    CAS  PubMed  Google Scholar 

  33. 33

    Renicke, C., Schuster, D., Usherenko, S., Essen, L.O. & Taxis, C.A. LOV2 domain–based optogenetic tool to control protein degradation and cellular function. Chem. Biol. 20, 619–626 (2013).

    CAS  PubMed  Google Scholar 

  34. 34

    Bonger, K.M., Rakhit, R., Payumo, A.Y., Chen, J.K. & Wandless, T.J. General method for regulating protein stability with light. ACS Chem. Biol. 9, 111–115 (2014).

    CAS  PubMed  Google Scholar 

  35. 35

    Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G. & Heckel, A. Light-controlled tools. Angew. Chem. Int. Edn Engl. 51, 8446–8476 (2012). A recent review dealing with chemical strategies of irreversible and reversible photoactivation for biological applications.

    CAS  Google Scholar 

  36. 36

    Ellis-Davies, G.C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Lin, W., Albanese, C., Pestell, R.G. & Lawrence, D.S. Spatially discrete, light-driven protein expression. Chem. Biol. 9, 1347–1353 (2002).

    CAS  PubMed  Google Scholar 

  38. 38

    Shi, Y. & Koh, J.T. Light-activated transcription and repression by using photocaged SERMs. ChemBioChem 5, 788–796 (2004).

    CAS  PubMed  Google Scholar 

  39. 39

    Cambridge, S.B. et al. Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nat. Methods 6, 527–531 (2009).

    CAS  PubMed  Google Scholar 

  40. 40

    Link, K.H., Shi, Y. & Koh, J.T. Light activated recombination. J. Am. Chem. Soc. 127, 13088–13089 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Sinha, D.K. et al. Photocontrol of protein activity in cultured cells and zebrafish with one- and two-photon illumination. ChemBioChem 11, 653–663 (2010).

    CAS  PubMed  Google Scholar 

  42. 42

    Sinha, D.K. et al. Photoactivation of the CreER T2 recombinase for conditional site-specific recombination with high spatiotemporal resolution. Zebrafish 7, 199–204 (2010).

    CAS  PubMed  Google Scholar 

  43. 43

    Umeda, N., Ueno, T., Pohlmeyer, C., Nagano, T. & Inoue, T. A photocleavable rapamycin conjugate for spatiotemporal control of small GTPase activity. J. Am. Chem. Soc. 133, 12–14 (2011).

    CAS  PubMed  Google Scholar 

  44. 44

    Karginov, A.V. et al. Light regulation of protein dimerization and kinase activity in living cells using photocaged rapamycin and engineered FKBP. J. Am. Chem. Soc. 133, 420–423 (2011).

    CAS  PubMed  Google Scholar 

  45. 45

    Gautier, A. et al. Genetically encoded photocontrol of protein localization in mammalian cells. J. Am. Chem. Soc. 132, 4086–4088 (2010).

    CAS  Google Scholar 

  46. 46

    Gautier, A., Deiters, A. & Chin, J.W. Light-activated kinases enable temporal dissection of signaling networks in living cells. J. Am. Chem. Soc. 133, 2124–2127 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Arbely, E., Torres-Kolbus, J., Deiters, A. & Chin, J.W. Photocontrol of tyrosine phosphorylation in mammalian cells via genetic encoding of photocaged tyrosine. J. Am. Chem. Soc. 134, 11912–11915 (2012).

    CAS  Google Scholar 

  48. 48

    Nguyen, D.P. et al. Genetic encoding of photocaged cysteine allows photoactivation of TEV protease in live mammalian cells. J. Am. Chem. Soc. 136, 2240–2243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Hemphill, J., Chou, C., Chin, J.W. & Deiters, A. Genetically encoded light-activated transcription for spatiotemporal control of gene expression and gene silencing in mammalian cells. J. Am. Chem. Soc. 135, 13433–13439 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Bianco, A., Townsley, F.M., Greiss, S., Lang, K. & Chin, J.W. Expanding the genetic code of Drosophila melanogaster. Nat. Chem. Biol. 8, 748–750 (2012).

    CAS  Google Scholar 

  51. 51

    Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Fortin, D.L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).

    CAS  Google Scholar 

  54. 54

    Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).

    CAS  Google Scholar 

  55. 55

    Janovjak, H., Szobota, S., Wyart, C., Trauner, D. & Isacoff, E.Y. A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing. Nat. Neurosci. 13, 1027–1032 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56

    Reiner, A. & Isacoff, E.Y. Tethered ligands reveal glutamate receptor desensitization depends on subunit occupancy. Nat. Chem. Biol. 10, 273–280 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Toettcher, J.E., Voigt, C.A., Weiner, O.D. & Lim, W.A. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat. Methods 8, 35–38 (2011).

    CAS  PubMed  Google Scholar 

  58. 58

    Toettcher, J.E., Weiner, O.D. & Lim, W.A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Milo, R., Jorgensen, P., Moran, U., Weber, G. & Springer, M. BioNumbers—the database of key numbers in molecular and cell biology. Nucleic Acids Res. 38, D750–D753 (2010).

    CAS  PubMed  Google Scholar 

  60. 60

    Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013). A recent and exhaustive perspective on photolabile protecting (caging) groups in chemistry and biology.

    PubMed  Google Scholar 

  61. 61

    Oron, D., Papagiakoumou, E., Anselmi, F. & Emiliani, V. Two-photon optogenetics. Prog. Brain Res. 196, 119–143 (2012). A recent review on two-photon optical approaches for localized photoactivation of optogenetic tools.

    CAS  PubMed  Google Scholar 

  62. 62

    Brown, E.B., Shear, J.B., Adams, S.R., Tsien, R.Y. & Webb, W.W. Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys. J. 76, 489–499 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Kiskin, N.I. & Ogden, D. Two-photon excitation and photolysis by pulsed laser illumination modelled by spatially non-uniform reactions with simultaneous diffusion. Eur. Biophys. J. 30, 571–587 (2002). A theoretical article providing simple relations to achieve localized photoactivation.

    CAS  PubMed  Google Scholar 

  64. 64

    Zayat, L., Calero, C., Albores, P., Baraldo, L. & Etchenique, R. A new strategy for neurochemical photodelivery: metal-ligand heterolytic cleavage. J. Am. Chem. Soc. 125, 882–883 (2003).

    CAS  PubMed  Google Scholar 

  65. 65

    Donato, L. et al. Water-soluble, donor-acceptor biphenyl derivatives in the 2-(o-nitrophenyl)propyl series: highly efficient two-photon uncaging of the neurotransmitter gamma-aminobutyric acid at λ = 800 nm. Angew. Chem. Int. Edn Engl. 51, 1840–1843 (2012).

    CAS  Google Scholar 

  66. 66

    Bléger, D., Schwarz, J., Brouwer, A.M. & Hecht, S. o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J. Am. Chem. Soc. 134, 20597–20600 (2012).

    PubMed  Google Scholar 

  67. 67

    Šebej, P. et al. Fluorescein analogues as photoremovable protecting groups absorbing at approximately 520 nm. J. Org. Chem. 78, 1833–1843 (2013).

    PubMed  Google Scholar 

  68. 68

    Fournier, L. et al. Coumarinylmethyl caging groups with redshifted absorption. Chemistry 19, 17494–17507 (2013).

    CAS  PubMed  Google Scholar 

  69. 69

    Olson, J.P., Banghart, M.R., Sabatini, B.L. & Ellis-Davies, G.C. Spectral evolution of a photochemical protecting group for orthogonal two-color uncaging with visible light. J. Am. Chem. Soc. 135, 15948–15954 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Kienzler, M.A. et al. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Labruère, R. et al. “Self-immolative” spacer for uncaging with fluorescence reporting. Angew. Chem. Int. Edn Engl. 51, 9344–9347 (2012).

    Google Scholar 

  72. 72

    Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007). The first proof of principle for brain control (neural activation and inhibition) in vivo.

    CAS  PubMed  Google Scholar 

  73. 73

    Tye, K.M. & Deisseroth, K. Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251–266 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Priestman, M.A., Sun, L. & Lawrence, D.S. Dual wavelength photoactivation of cAMP- and cGMP-dependent protein kinase signaling pathways. ACS Chem. Biol. 6, 377–384 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Amatrudo, J.M. et al. Wavelength-selective one- and two-photon uncaging of GABA. ACS Chem. Neurosci. 5, 64–70 (2014).

    CAS  PubMed  Google Scholar 

  76. 76

    Fournier, L. et al. A blue-absorbing photolabile protecting group for in vivo chromatically orthogonal photoactivation. ACS Chem. Biol. 8, 1528–1536 (2013).

    CAS  PubMed  Google Scholar 

  77. 77

    Rockwell, N.C., Su, Y.S. & Lagarias, J.C. Phytochrome structure and signaling mechanisms. Annu. Rev. Plant Biol. 57, 837–858 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Bourgeois, D. & Adam, V. Reversible photoswitching in fluorescent proteins: a mechanistic view. IUBMB Life 64, 482–491 (2012).

    CAS  PubMed  Google Scholar 

  79. 79

    Zoltowski, B.D., Vaccaro, B. & Crane, B.R. Mechanism-based tuning of a LOV domain photoreceptor. Nat. Chem. Biol. 5, 827–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Radu, I. et al. Conformational changes of channelrhodopsin-2. J. Am. Chem. Soc. 131, 7313–7319 (2009).

    CAS  PubMed  Google Scholar 

  81. 81

    Hagen, V. et al. Fluorescence spectroscopic quantification of the release of cyclic nucleotides from photocleavable [bis(carboxymethoxy)coumarin-4-yl]methyl esters inside cells. Angew. Chem. Int. Edn Engl. 41, 3625–3628 (2002).

    CAS  Google Scholar 

  82. 82

    Gagey, N., Neveu, P. & Jullien, L. Two-photon uncaging with the efficient 3,5-dibromo-2,4-dihydroxycinnamic caging group. Angew. Chem. Int. Edn Engl. 46, 2467–2469 (2007).

    CAS  Google Scholar 

  83. 83

    Gagey, N. et al. Two-photon uncaging with fluorescence reporting: evaluation of the o-hydroxycinnamic platform. J. Am. Chem. Soc. 129, 9986–9998 (2007).

    CAS  PubMed  Google Scholar 

  84. 84

    Gradinaru, V. et al. Targeting and readout strategies for fast optical neural control in vitro and in vivo. J. Neurosci. 27, 14231–14238 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Hahn, K.M. & Kuhlman, B. Hold me tightly LOV. Nat. Methods 7, 595–596 (2010).

    CAS  PubMed  Google Scholar 

  86. 86

    Petit, M. et al. X-ray photolysis to release ligands from caged reagents by an intramolecular antenna sensitive to magnetic resonance imaging. Angew. Chem. Int. Edn Engl. 50, 9708–9711 (2011).

    CAS  Google Scholar 

  87. 87

    Couture, O. et al. Ultrasound internal tattooing. Med. Phys. 38, 1116–1123 (2011).

    PubMed  Google Scholar 

  88. 88

    Stringham, E.G. & Candido, E.P. Targeted single-cell induction of gene products in Caenorhabditis elegans: a new tool for developmental studies. J. Exp. Zool. 266, 227–233 (1993).

    CAS  PubMed  Google Scholar 

  89. 89

    Zemelman, B.V., Lee, G.A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).

    CAS  PubMed  Google Scholar 

  90. 90

    Govorunova, E.G., Spudich, E.N., Lane, C.E., Sineshchekov, O.A. & Spudich, J.L. New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2, e00115–11 (2011).

    PubMed  PubMed Central  Google Scholar 

  91. 91

    Nagel, G. et al. Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296, 2395–2398 (2002).

    CAS  PubMed  Google Scholar 

  92. 92

    Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    PubMed  PubMed Central  Google Scholar 

  93. 93

    Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Wu, Y.I., Wang, X., He, L., Montell, D. & Hahn, K.M. Spatiotemporal control of small GTPases with light using the LOV domain. Methods Enzymol. 497, 393–407 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Kuhn, H.J., Braslavsky, S.E. & Schmidt, R. Chemical actinometry (IUPAC Technical report). Pure Appl. Chem. 76, 2105–2146 (2004).

    CAS  Google Scholar 

  96. 96

    Berberan-Santos, M.N. Beer's law revisited. J. Chem. Educ. 67, 757–759 (1990).

    CAS  Google Scholar 

  97. 97

    Friedrich, D.M. Two-photon molecular spectroscopy. J. Chem. Educ. 59, 472–481 (1982).

    CAS  Google Scholar 

  98. 98

    Zipfel, W.R., Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    CAS  PubMed  Google Scholar 

  99. 99

    Xu, W.R. & Webb, W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 nm to 1050 nm. J. Opt. Soc. Am. B 13, 481–491 (1996).

    CAS  Google Scholar 

  100. 100

    Kantevari, S., Matsuzaki, M., Kanemoto, Y., Kasai, H. & Ellis-Davies, G.C. Two-color, two-photon uncaging of glutamate and GABA. Nat. Methods 7, 123–125 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the authors' laboratories was supported by grants from ANR-12-BSV5-0013-02(LIPKO), ANR+11-BS07-021-01(KITUSE), LEA-NaBi, LIA CNRS-CNSI, Equipex Morphoscope 2, FranceBioImaging and PSL Research University. The authors apologize to the researchers whose work could not be cited because of space constraints.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sophie Vriz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gautier, A., Gauron, C., Volovitch, M. et al. How to control proteins with light in living systems. Nat Chem Biol 10, 533–541 (2014). https://doi.org/10.1038/nchembio.1534

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing