Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

A multifunctional enzyme is involved in bacterial ether lipid biosynthesis

Abstract

Fatty acid–derived ether lipids are present not only in most vertebrates but also in some bacteria. Here we describe what is to our knowledge the first gene cluster involved in the biosynthesis of such lipids in myxobacteria that encodes the multifunctional enzyme ElbD, which shows similarity to polyketide synthases. Initial characterization of elbD mutants in Myxococcus xanthus and Stigmatella aurantiaca showed the importance of these ether lipids for fruiting body formation and sporulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic investigation of the elbD mutant.
Figure 2: Differential analysis of lipid fractions and biochemical characterization of ElbD.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Řezanka, T., Křesinová, Z., Kolouchová, I. & Sigler, K. Folia Microbiol. (Praha) 57, 463–472 (2012).

    Article  Google Scholar 

  2. Prins, R.A. & van Golde, L.M. FEBS Lett. 63, 107–111 (1976).

    Article  CAS  PubMed  Google Scholar 

  3. Guan, Z. et al. Biochim. Biophys. Acta 1811, 186–193 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Ring, M.W. et al. J. Biol. Chem. 281, 36691–36700 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Whitworth, D.E. Myxobacteria (ASM Press, 2007).

  6. Hoiczyk, E. et al. Mol. Microbiol. 74, 497–517 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhat, S., Ahrendt, T., Dauth, C., Bode, H.B. & Shimkets, L.J. mBio 5, e000939–13 (2014).

    Article  Google Scholar 

  8. Curtis, P.D., Geyer, R., White, D.C. & Shimkets, L.J. Environ. Microbiol. 8, 1935–1949 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Magnusson, C.D. & Haraldsson, G.G. Chem. Phys. Lipids 164, 315–340 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Kearns, D.B. et al. Proc. Natl. Acad. Sci. USA 98, 13990–13994 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garcia, R.O., Reichenbach, H., Ring, M.W. & Müller, R. Int. J. Syst. Evol. Microbiol. 59, 1524–1530 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Watschinger, K. & Werner, E.R. Biochimie 95, 59–65 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lambalot, R.H. et al. Chem. Biol. 3, 923–936 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Khurana, P., Gokhale, R. & Mohanty, D. BMC Bioinformatics 11, 57 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee, S.B. & Suh, M.C. Mol. Plant 6, 246–249 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Wichard, T., Poulet, S.A. & Pohnert, G. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 814, 155–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. MacDonald, D.L. & Goldfine, H. Biochem. Cell Biol. 68, 225–230 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Zhu, X. & Xiong, L. Proc. Natl. Acad. Sci. USA 110, 17790–17795 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vannuccini, S. Shark Utilization, Marketing and Trade (Food and Agriculture Organization of the United Nations, 1999).

  20. Fernández, Ó., Vázquez, L., Reglero, G. & Torres, C.F. Food Chem. 136, 464–471 (2013).

    Article  PubMed  Google Scholar 

  21. Clarke, S.C., Harley, S.J., Hoyle, S.D. & Rice, J.S. Conserv. Biol. 27, 197–209 (2013).

    Article  PubMed  Google Scholar 

  22. Bretscher, A.P. & Kaiser, D. J. Bacteriol. 133, 763–768 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mahmud, T. et al. J. Biol. Chem. 277, 32768–32774 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Bertani, G. J. Bacteriol. 62, 293–300 (1951).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jakobsen, J.S. et al. J. Bacteriol. 186, 4361–4368 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosario, C.J. & Singer, M. J. Bacteriol. 189, 8793–8800 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nishihara, K., Kanemori, M., Yanagi, H. & Yura, T. Appl. Environ. Microbiol. 66, 884–889 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brachmann, A.O. et al. Angew. Chem. Int. Ed. Engl. 51, 12086–12089 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Laemmli, U.K. Nature 227, 680–685 (1970).

    Article  CAS  PubMed  Google Scholar 

  30. Heath, R.J. & Rock, C.O. J. Bacteriol. 180, 1425–1430 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. La Clair, J.J., Foley, T.L., Schegg, T.R., Regan, C.M. & Burkart, M.D. Chem. Biol. 11, 195–201 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Rangan, K.J., Yang, Y.Y., Charron, G. & Hang, H.C. J. Am. Chem. Soc. 132, 10628–10629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wessel, D. & Flügge, U.I. Anal. Biochem. 138, 141–143 (1984).

    Article  CAS  PubMed  Google Scholar 

  34. Bligh, E.G. & Dyer, W.J. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to M. Ring for the identification of the elb operon; O. Schimming for providing the phosphopantetheinyl transferases; C. Kegler for providing expression plasmids pSUMO3_CK4, pSUMO3_CK5, pCOLA_tacI/I and pACYC_tacI/I; S. Fuchs for the MALDI-MS measurements; and A. Perèz for providing acyl donors. H.B.B. is grateful to the German Research Foundation (DFG) for an Emmy Noether fellowship that initiated this work.

Author information

Authors and Affiliations

Authors

Contributions

H.B.B. conceived the work, W.L. and T.A. designed and performed the myxobacterial sporulation assay, and W.L. designed and performed all of the other experiments. Molecular modeling and ligand docking experiments were performed by K.A.J.B. H.B.B. and W.L. wrote the paper.

Corresponding author

Correspondence to Helge B Bode.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–16, Supplementary Note and Supplementary Figures 1–12. (PDF 11638 kb)

Supplementary Data Set 1

Complete FAME-GC-MS data from Figure 1b, represented as percentage of all fatty acid methyl esters. (XLSX 48 kb)

Supplementary Data Set 2

Closest homologs of ElbA–E from Myxococcus xanthus and the human alkyl-dihydroxyacetonephosphate synthase found in other sequenced species of the order myxococcales by means of BLAST P search. (XLSX 21 kb)

Supplementary Data Set 3

Result of MAFFT alignment from which the cladogram in Supplementary Figure 9 was calculated. (XLSX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorenzen, W., Ahrendt, T., Bozhüyük, K. et al. A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat Chem Biol 10, 425–427 (2014). https://doi.org/10.1038/nchembio.1526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1526

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology