Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions

Abstract

The plant stress hormone abscisic acid (ABA) is critical for several abiotic stress responses. ABA signaling is normally repressed by group-A protein phosphatases 2C (PP2Cs), but stress-induced ABA binds Arabidopsis PYR/PYL/RCAR (PYL) receptors, which then bind and inhibit PP2Cs. X-ray structures of several receptor–ABA complexes revealed a tunnel above ABA's 3′ ring CH that opens at the PP2C binding interface. Here, ABA analogs with sufficiently long 3′ alkyl chains were predicted to traverse this tunnel and block PYL-PP2C interactions. To test this, a series of 3′-alkylsulfanyl ABAs were synthesized with different alkyl chain lengths. Physiological, biochemical and structural analyses revealed that a six-carbon alkyl substitution produced a potent ABA antagonist that was sufficiently active to block multiple stress-induced ABA responses in vivo. This study provides a new approach for the design of ABA analogs, and the results validated structure-based design for this target class.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of ASn compounds and ASn effects on Arabidopsis seed germination.
Figure 2: Effects of ASn compounds on expression of Arabidopsis ABA-responsive genes.
Figure 3: Effects of ASn on HAB1 inhibition by ABA receptors.
Figure 4: Crystal structure of PYR1–AS6 complex.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Kumari, S. & van der Hoorn, R.A.L. A structural biology perspective on bioactive small molecules and their plant targets. Curr. Opin. Plant Biol. 14, 480–488 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Lumba, S., Cutler, S. & McCourt, P. Plant nuclear hormone receptors: a role for small molecules in protein-protein interactions. Annu. Rev. Cell Dev. Biol. 26, 445–469 (2010).

    CAS  PubMed  Google Scholar 

  3. Santiago, J., Henzler, C. & Hothorm, M. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 341, 889–892 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Sun, Y. et al. Structure reveals that BAK1 as a co-receptor recognizes the BRI1-bound brassinolide. Cell Res. 23, 1326–1329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wells, J.A. & McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).

    CAS  PubMed  Google Scholar 

  6. Yoon, J.M. et al. Chemical screening of an inhibitory for gibberellin receptors based on a yeast two-hybrid system. Bioorg. Med. Chem. Lett. 23, 1096–1098 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi, K. et al. Rational design of an auxin antagonist of the SCFTIR1 auxin receptor complex. ACS Chem. Biol. 7, 590–598 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Hayashi, K. et al. Small-molecule agonists and antagonists of F-box protein-substrate interactions in auxin perception and signaling. Proc. Natl. Acad. Sci. USA 105, 5632–5637 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Muto, T. & Todoroki, Y. Brassinolide-2,3-acetonide: a brassinolide-induced rice lamina joint inclination antagonist. Bioorg. Med. Chem. 21, 4413–4419 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Dupeux, F. et al. A thermodynamic switch modulates abscisic acid receptor sensitivity. EMBO J. 30, 4171–4184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hao, Q. et al. The molecular basis of ABA-independent inhibition of PP2Cs by a subclass of PYL proteins. Mol. Cell 42, 662–672 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Hao, Q. et al. Functional mechanism of the abscisic acid agonist pyrabactin. J. Biol. Chem. 285, 28946–28952 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Melcher, K. et al. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462, 602–608 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Melcher, K. et al. Identification and mechanism of ABA receptor antagonism. Nat. Struct. Mol. Biol. 17, 1102–1108 (2010).

    Article  CAS  Google Scholar 

  15. Melcher, K., Zhou, X.E. & Xu, H.E. Thirsty plants and beyond: structural mechanisms of abscisic acid perception and signaling. Curr. Opin. Struct. Biol. 20, 722–729 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyazono, K. et al. Structural basis of abscisic acid signalling. Nature 462, 609–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura, N. et al. Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373–1379 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santiago, J. et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Yin, P. et al. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Biol. 16, 1230–1236 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, X. et al. Complex structures of the abscisic acid receptor PYL3/RCAR13 reveal a unique regulatory mechanism. Structure 20, 780–790 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R. & Abrams, S.R. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61, 651–679 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. McCarty, D.R. Genetic-control and integration of maturation and germination pathways in seed development. Annu. Rev. Plant Physiol. 46, 71–93 (1995).

    Article  CAS  Google Scholar 

  23. Ma, Y. et al. Regulators of PP2C Phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).

    CAS  PubMed  Google Scholar 

  24. Park, S.Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Soon, F.F. et al. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science 335, 85–88 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Fujii, H. et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ng, L.M. et al. Structural basis for basal activity and autoactivation of abscisic acid (ABA) signaling SnRK2 kinases. Proc. Natl. Acad. Sci. USA 108, 21259–21264 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brandt, B. et al. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proc. Natl. Acad. Sci. USA 109, 10593–10598 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Geiger, D. et al. Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc. Natl. Acad. Sci. USA 106, 21425–21430 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Umezawa, T. et al. Type 2C protein phosphatases directly regulate abscisic acid–activated protein kinases in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 17588–17593 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xue, S. et al. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell. EMBO J. 30, 1645–1658 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Santiago, J. et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60, 575–588 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Antoni, R. et al. PYRABACTIN RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol. 161, 931–941 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Gonzalez-Guzman, M. et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24, 2483–2496 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Okamoto, M. et al. Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc. Natl. Acad. Sci. USA 110, 12132–12137 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Todoroki, Y. & Hirai, N. Abscisic acid analogs for probing the mechanism of abscisic acid reception and inactivation. Stud. Nat. Prod. Chem. 27, 321–360 (2002).

    Article  CAS  Google Scholar 

  37. Ji, X. et al. Control of abscisic acid catabolism and abscisic acid homeostasis is important for reproductive stage stress tolerance in cereals. Plant Physiol. 156, 647–662 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Todoroki, Y. & Ueno, K. Development of specific inhibitors of CYP707A, a key enzyme in the catabolism of abscisic acid. Curr. Med. Chem. 17, 3230–3244 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Kushiro, T. et al. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8′-hydroxylases: key enzymes in ABA catabolism. EMBO J. 23, 1647–1656 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Saito, S. et al. Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol. 134, 1439–1449 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ueno, K. et al. Differences between the structural requirements for ABA 8′-hydroxylase inhibition and for ABA activity. Bioorg. Med. Chem. 13, 3359–3370 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Kuromori, T. et al. ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc. Natl. Acad. Sci. USA 107, 2361–2366 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kang, J. et al. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 107, 2355–2360 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kanno, Y. et al. Identification of an abscisic acid transporter by functional screening using the receptor complex as a sensor. Proc. Natl. Acad. Sci. USA 109, 9653–9658 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fjeld, C.C. & Denu, M.J. Kinetic analysis of human serine/threonine protein Phosphatase 2Cα. J. Biol. Chem. 274, 20336–20343 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Pizzio, G.A. et al. The PYL4194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2Cα interaction for abscisic acid signaling and plant drought resistance. Plant Physiol. 163, 441–455 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. GaussView. Version 5, (Dennington, R., Keith, T. & Millam, J., Semichem Inc., Shawnee Mission, Kansas, USA, 2009).

  48. Gaussian 09. Revision A.02, (Frisch, M. J. et al., Gaussian, Inc., Wallingford, Connecticut, USA 2009).

  49. Vanquelef, E. et al. R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39, W511–W517 (2011) http://q4md-forcefieldtools.org/REDS/.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. TINKER. Ver. 6.0. (Ponder, J.W., Washington University School of Medicine, St. Louis, Missouri, USA 2011).

  51. Okazaki, M. et al. Abscinazole-E2B, a practical and selective inhibitor of ABA 8′-hydroxylase CYP707A. Bioorg. Med. Chem. 20, 3162–3172 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  55. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Murshudov, G.N., Vagin, A. & Dodsen, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  57. Schüttelkopf, A.W. & van Aalten, D.M.F. PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Saito, S. et al. A plant growth retardant, uniconazole, is a potent inhibitor of ABA catabolism in Arabidopsis. Biosci. Biotechnol. Biochem. 70, 1731–1739 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Kondo, S., Ponrod, W., Kanlayanarat, S. & Hirai, N. Abscisic acid metabolism during fruit development and maturation of mangosteens. J. Am. Soc. Hortic. Sci. 127, 737–741 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Nakagawa for providing pGWB vectors and Toray Industries Inc., Tokyo, Japan, for the gift of (+)-ABA. This work was supported in part by the Japanese Society for the Promotion of Science (JSPS) Postdoctoral Fellowships for Research Abroad (to M.O.), JSPS KAKENHI (Grant-in-Aid for Young Scientists 26711018 to M.O.) and the US National Science Foundation (Integrative Organismal Systems 0820508 to S.R.C.).

Author information

Authors and Affiliations

Authors

Contributions

J.T., M.O. and Y.T. conceived and J.T., M.O., S.R.C. and Y.T. designed the research. J.T., M.O., T.A., T.M., S.Y., M. Sue, M. Seo, Y.K., K.T., A.E., E.N., S.R.C. and Y.T. performed the research and/or analyzed data. J.T., M.O., S.R.C. and Y.T. co-wrote the manuscript with the assistance of M. Sue, M. Seo, N.H. and T.O.

Corresponding author

Correspondence to Yasushi Todoroki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–16, Supplementary Tables 1–5 and Supplementary Note. (PDF 14514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, J., Okamoto, M., Akiyama, T. et al. Designed abscisic acid analogs as antagonists of PYL-PP2C receptor interactions. Nat Chem Biol 10, 477–482 (2014). https://doi.org/10.1038/nchembio.1524

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1524

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing