Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Dynamics and hydration explain failed functional transformation in dehalogenase design

Abstract

We emphasize the importance of dynamics and hydration for enzymatic catalysis and protein design by transplanting the active site from a haloalkane dehalogenase with high enantioselectivity to nonselective dehalogenase. Protein crystallography confirms that the active site geometry of the redesigned dehalogenase matches that of the target, but its enantioselectivity remains low. Time-dependent fluorescence shifts and computer simulations revealed that dynamics and hydration at the tunnel mouth differ substantially between the redesigned and target dehalogenase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transplantation of the active site and the access tunnel from DbjA to DhaA.
Figure 2: Structural and biochemical properties of wild types and variants.
Figure 3: Dynamics and hydration of wild type and variants.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Damborsky, J. & Brezovsky, J. Curr. Opin. Chem. Biol. 19, 8–16 (2014).

    Article  CAS  Google Scholar 

  2. Koehl, P. & Levitt, M. J. Mol. Biol. 293, 1161–1181 (1999).

    Article  CAS  Google Scholar 

  3. Siegel, J.B. et al. Science 329, 309–313 (2010).

    Article  CAS  Google Scholar 

  4. Röthlisberger, D. et al. Nature 453, 190–195 (2008).

    Article  Google Scholar 

  5. Jiang, L. et al. Science 319, 1387–1391 (2008).

    Article  CAS  Google Scholar 

  6. Kries, H., Blomberg, R. & Hilvert, D. Curr. Opin. Chem. Biol. 17, 221–228 (2013).

    Article  CAS  Google Scholar 

  7. Khersonsky, O. et al. Proc. Natl. Acad. Sci. USA 109, 10358–10363 (2012).

    Article  CAS  Google Scholar 

  8. Khare, S.D. et al. Nat. Chem. Biol. 8, 294–300 (2012).

    Article  CAS  Google Scholar 

  9. Giger, L. et al. Nat. Chem. Biol. 9, 494–498 (2013).

    Article  CAS  Google Scholar 

  10. Blomberg, R. et al. Nature 503, 418–421 (2013).

    Article  CAS  Google Scholar 

  11. Sato, Y. et al. Appl. Environ. Microbiol. 71, 4372–4379 (2005).

    Article  CAS  Google Scholar 

  12. Kulakova, A.N., Larkin, M.J. & Kulakov, L.A. Microbiology 143, 109–115 (1997).

    Article  CAS  Google Scholar 

  13. Chovancová, E., Kosinski, J., Bujnicki, J.M. & Damborsky, J. Proteins 67, 305–316 (2007).

    Article  Google Scholar 

  14. Prokop, Z. et al. Angew. Chem. Int. Edn Engl. 49, 6111–6115 (2010).

    Article  CAS  Google Scholar 

  15. Eisenmesser, E.Z. et al. Nature 438, 117–121 (2005).

    Article  CAS  Google Scholar 

  16. Henzler-Wildman, K. & Kern, D. Nature 450, 964–972 (2007).

    Article  CAS  Google Scholar 

  17. Bhabha, G. et al. Science 332, 234–238 (2011).

    Article  CAS  Google Scholar 

  18. Jimenez, R., Fleming, G.R., Kumar, P.V. & Maroncelli, M. Nature 369, 471–473 (1994).

    Article  CAS  Google Scholar 

  19. Halle, B. & Nilsson, L. J. Phys. Chem. B 113, 8210–8213 (2009).

    Article  CAS  Google Scholar 

  20. Jesenská, A. et al. J. Am. Chem. Soc. 131, 494–501 (2009).

    Article  Google Scholar 

  21. Chang, C.-W. et al. Proc. Natl. Acad. Sci. USA 107, 2914–2919 (2010).

    Article  CAS  Google Scholar 

  22. Jurkiewicz, P., Cwiklik, L., Jungwirth, P. & Hof, M. Biochimie 94, 26–32 (2012).

    Article  CAS  Google Scholar 

  23. Nilsson, L. & Halle, B. Proc. Natl. Acad. Sci. USA 102, 13867–13872 (2005).

    Article  CAS  Google Scholar 

  24. Baker, D. Protein Sci. 19, 1817–1819 (2010).

    Article  CAS  Google Scholar 

  25. Chovancova, E. et al. PLoS Comput. Biol. 8, e1002708 (2012).

    Article  CAS  Google Scholar 

  26. Sambrook, J. & Russell, D.W. Molecular Cloning: a Laboratory Manual. (Cold Spring Harbor Laboratory Press, New York, 2001).

  27. Iwasaki, I., Utsumi, S. & Ozawa, T. Bull. Chem. Soc. Jpn. 25, 226 (1952).

    Article  CAS  Google Scholar 

  28. Furse, K.E. & Corcelli, S.A. J. Phys. Chem. Lett. 1, 1813–1820 (2010).

    Article  CAS  Google Scholar 

  29. Ducruix, A. & Giegé, R. Crystallization of Nucleic Acids and Proteins: a Practical Approach. (Oxford University Press, New York, 1999).

  30. Teng, T.Y. J. Appl. Crystallogr. 23, 387–391 (1990).

    Article  CAS  Google Scholar 

  31. Vagin, A. & Teplyakov, A. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  32. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  33. Sheldrick, G.M. Acta Crystallogr. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

  34. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Baker (University of Washington) for helpful comments on the manuscript. This work was supported by the European Regional Development Fund (CZ.1.05/1.1.00/02.0123), the Czech Ministry of Education (LO1214), the Czech Science Foundation (P208/12/G016 to J.S. and M.H. and P503/12/0572 to J.D.) and the 'Employment of Best Young Scientists for International Cooperation Empowerment' program (CZ1.07/2.3.00/30.0037 to J.B.), financed by both the European Social Fund and the state budget of the Czech Republic. The Academy of Sciences is acknowledged for the Praemium Academie award (M.H.). CERIT Scientific Cloud is acknowledged for providing access to their computing facilities under the Center CERIT Scientific Cloud program (CZ.1.05/3.2.00/08.0144).

Author information

Authors and Affiliations

Authors

Contributions

J.S. and T.C. conducted fluorescence spectroscopy measurements. J.B. performed molecular modeling. T.K. and A.F. constructed the mutants. T.K. and Z.P. biochemically characterized the mutants. T.K., V.S. and R.C. conducted CD spectroscopy measurements. M.L. and I.K.S. determined the crystal structure. M.H. and J.D. conceived and supervised the project. J.S., J.B., T.K., M.H. and J.D. wrote the paper together.

Corresponding authors

Correspondence to Martin Hof or Jiri Damborsky.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Results, Supplementary Figures 1–11 and Supplementary Tables 1–9. (PDF 2175 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sykora, J., Brezovsky, J., Koudelakova, T. et al. Dynamics and hydration explain failed functional transformation in dehalogenase design. Nat Chem Biol 10, 428–430 (2014). https://doi.org/10.1038/nchembio.1502

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1502

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing