Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering the product profile of a polysialyltransferase

Abstract

Oligo- and polysaccharides have myriad applications as therapeutic reagents from glycoconjugate vaccines to matrices for tissue engineering. Polysaccharide length may vary over several orders of magnitude and is a critical determinant of both their physical properties and biological activities. Therefore, the tailored synthesis of oligo- and polysaccharides of defined size is a major goal for glycoengineering. By mutagenesis and screening of a bacterial polysialyltransferase (polyST), we identified a single-residue switch that controls the size distribution of polymeric products. Specific substitutions at this site yielded distributive enzymes that synthesize polysaccharides with narrow size distribution ideal for glycoengineering applications. Mechanistic investigation revealed that the wild-type enzyme has an extended binding site that accommodates at least 20 residues of the growing polymer; changes in affinity along this binding site allow fine-tuning of the enzyme's product distribution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of polysaccharide chain elongation and schematic HPLC product profiles.
Figure 2: Drifted polySTs exhibit diverse patterns of chain elongation.
Figure 3: Saturated mutagenesis clones trace a limit for low product dispersity.
Figure 4: PolyST product distribution is determined by acceptor preference.
Figure 5: Single amino acid exchanges which alter the polyST product distribution.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Comstock, L.E. & Kasper, D.L. Bacterial glycans: key mediators of diverse host immune responses. Cell 126, 847–850 (2006).

    Article  CAS  Google Scholar 

  2. DeAngelis, P.L., Liu, J. & Linhardt, R.J. Chemoenzymatic synthesis of glycosaminoglycans: re-creating, re-modeling and re-designing nature's longest or most complex carbohydrate chains. Glycobiology 23, 764–777 (2013).

    Article  CAS  Google Scholar 

  3. Pollard, A.J., Perrett, K.P. & Beverley, P.C. Maintaining protection against invasive bacteria with protein–polysaccharide conjugate vaccines. Nat. Rev. Immunol. 9, 213–220 (2009).

    Article  CAS  Google Scholar 

  4. Mazmanian, S.K. & Kasper, D.L. The love-hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 6, 849–858 (2006).

    Article  CAS  Google Scholar 

  5. Troy, F.A. Polysialylation: from bacteria to brains. Glycobiology 2, 5–23 (1992).

    Article  CAS  Google Scholar 

  6. Rutishauser, U. Polysialic acid in the plasticity of the developing and adult vertebrate nervous system. Nat. Rev. Neurosci. 9, 26–35 (2008).

    Article  CAS  Google Scholar 

  7. Hildebrandt, H. & Dityatev, A. Polysialic acid in brain development and synaptic plasticity. Top. Curr. Chem. 10.1007/128_2013_446 (2013).

  8. Drake, P.M. et al. Polysialic acid governs T-cell development by regulating progenitor access to the thymus. Proc. Natl. Acad. Sci. USA 106, 11995–12000 (2009).

    Article  CAS  Google Scholar 

  9. El Maarouf, A. & Rutishauser, U. Use of PSA-NCAM in repair of the central nervous system. Adv. Exp. Med. Biol. 663, 137–147 (2010).

    Article  CAS  Google Scholar 

  10. Ghosh, M. et al. Extensive cell migration, axon regeneration, and improved function with polysialic acid–modified Schwann cells after spinal cord injury. Glia 60, 979–992 (2012).

    Article  Google Scholar 

  11. El Maarouf, A., Petridis, A.K. & Rutishauser, U. Use of polysialic acid in repair of the central nervous system. Proc. Natl. Acad. Sci. USA 103, 16989–16994 (2006).

    Article  CAS  Google Scholar 

  12. Lindhout, T. et al. Site-specific enzymatic polysialylation of therapeutic proteins using bacterial enzymes. Proc. Natl. Acad. Sci. USA 108, 7397–7402 (2011).

    Article  CAS  Google Scholar 

  13. Constantinou, A., Epenetos, A.A., Hreczuk-Hirst, D., Jain, S. & Deonarain, M.P. Modulation of antibody pharmacokinetics by chemical polysialylation. Bioconjug. Chem. 19, 643–650 (2008).

    Article  CAS  Google Scholar 

  14. Lindhout, T., Bainbridge, C.R., Costain, W.J., Gilbert, M. & Wakarchuk, W.W. Biochemical characterization of a polysialyltransferase from Mannheimia haemolytica A2 and comparison to other bacterial polysialyltransferases. PLoS ONE 8, e69888 (2013).

    Article  CAS  Google Scholar 

  15. McCarthy, P.C. et al. Chemoenzymatic synthesis of immunogenic meningococcal group C polysialic acid-tetanus Hc fragment glycoconjugates. Glycoconj. J. 30, 857–870 (2013).

    Article  CAS  Google Scholar 

  16. Peterson, D.C., Arakere, G., Vionnet, J., McCarthy, P.C. & Vann, W.F. Characterization and acceptor preference of a soluble meningococcal group C polysialyltransferase. J. Bacteriol. 193, 1576–1582 (2011).

    Article  CAS  Google Scholar 

  17. El Maarouf, A. et al. Enzymatic engineering of polysialic acid on cells in vitro and in vivo using a purified bacterial polysialyltransferase. J. Biol. Chem. 287, 32770–32779 (2012).

    Article  CAS  Google Scholar 

  18. Keys, T.G., Berger, M. & Gerardy-Schahn, R. A high-throughput screen for polysialyltransferase activity. Anal. Biochem. 427, 60–68 (2012).

    Article  CAS  Google Scholar 

  19. Levengood, M.R., Splain, R.A. & Kiessling, L.L. Monitoring processivity and length control of a carbohydrate polymerase. J. Am. Chem. Soc. 133, 12758–12766 (2011).

    Article  CAS  Google Scholar 

  20. Weigel, P.H. & DeAngelis, P.L. Hyaluronan synthases: a decade-plus of novel glycosyltransferases. J. Biol. Chem. 282, 36777–36781 (2007).

    Article  CAS  Google Scholar 

  21. Keys, T.G. et al. A universal fluorescent acceptor for high-performance liquid chromatography analysis of pro- and eukaryotic polysialyltransferases. Anal. Biochem. 427, 107–115 (2012).

    Article  CAS  Google Scholar 

  22. Otto, N.J. et al. Structure/function analysis of Pasteurella multocida heparosan synthases: toward defining enzyme specificity and engineering novel catalysts. J. Biol. Chem. 287, 7203–7212 (2012).

    Article  CAS  Google Scholar 

  23. Greenfield, L.K. et al. Domain organization of the polymerizing mannosyltransferases involved in synthesis of the Escherichia coli O8 and O9a lipopolysaccharide O-antigens. J. Biol. Chem. 287, 38135–38149 (2012).

    Article  CAS  Google Scholar 

  24. Stubbe, J. et al. Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu. Rev. Biochem. 74, 433–480 (2005).

    Article  CAS  Google Scholar 

  25. Breyer, W.A. & Matthews, B.W. A structural basis for processivity. Protein Sci. 10, 1699–1711 (2001).

    Article  CAS  Google Scholar 

  26. Von Hippel, P.H., Fairfield, F.R. & Dolejsi, M.K. On the processivity of polymerases. Ann. NY Acad. Sci. 726, 118–131 (1994).

    Article  CAS  Google Scholar 

  27. May, J.F., Splain, R.A., Brotschi, C. & Kiessling, L.L. A tethering mechanism for length control in a processive carbohydrate polymerization. Proc. Natl. Acad. Sci. USA 106, 11851–11856 (2009).

    Article  CAS  Google Scholar 

  28. Jing, W. & DeAngelis, P.L. Synchronized chemoenzymatic synthesis of monodisperse hyaluronan polymers. J. Biol. Chem. 279, 42345–42349 (2004).

    Article  CAS  Google Scholar 

  29. Freiberger, F. et al. Biochemical characterization of a Neisseria meningitidis polysialyltransferase reveals novel functional motifs in bacterial sialyltransferases. Mol. Microbiol. 65, 1258–1275 (2007).

    Article  CAS  Google Scholar 

  30. Yother, J. Capsules of Streptococcus pneumoniae and other bacteria: paradigms for polysaccharide biosynthesis and regulation. Annu. Rev. Microbiol. 65, 563–581 (2011).

    Article  CAS  Google Scholar 

  31. Vionnet, J. & Vann, W.F. Successive glycosyltransfer of sialic acid by Escherichia coli K92 polysialyltransferase in elongation of oligosialic acceptors. Glycobiology 17, 735–743 (2007).

    Article  CAS  Google Scholar 

  32. Gupta, R.D. & Tawfik, D.S. Directed enzyme evolution via small and effective neutral drift libraries. Nat. Methods 5, 939–942 (2008).

    Article  CAS  Google Scholar 

  33. Bershtein, S., Goldin, K. & Tawfik, D.S. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008).

    Article  CAS  Google Scholar 

  34. Stepto, R.F.T. Dispersity in polymer science (IUPAC recommendation 2009). Polym. Int. 59, 23–24 (2010).

    Article  CAS  Google Scholar 

  35. Romero, P.A. & Arnold, F.H. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10, 866–876 (2009).

    Article  CAS  Google Scholar 

  36. Bloom, J.D. et al. Evolution favors protein mutational robustness in sufficiently large populations. BMC Biol. 5, 29 (2007).

    Article  Google Scholar 

  37. Aharoni, A. et al. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat. Methods 3, 609–614 (2006).

    Article  CAS  Google Scholar 

  38. Freiberger, F. et al. Defining a substrate-binding model of a polysialyltransferase. ChemBioChem 14, 1949–1953 (2013).

    Article  CAS  Google Scholar 

  39. Whitfield, C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu. Rev. Biochem. 75, 39–68 (2006).

    Article  CAS  Google Scholar 

  40. Miyake, K. & Iijima, S. Bacterial capsular polysaccharide and sugar transferases. Adv. Biochem. Eng. Biotechnol. 90, 89–111 (2004).

    CAS  PubMed  Google Scholar 

  41. Steenbergen, S.M. & Vimr, E.R. Biosynthesis of the Escherichia coli K1 group 2 polysialic acid capsule occurs within a protected cytoplasmic compartment. Mol. Microbiol. 68, 1252–1267 (2008).

    Article  CAS  Google Scholar 

  42. Steenbergen, S.M. & Vimr, E.R. Functional relationships of the sialyltransferases involved in expression of the polysialic acid capsules of Escherichia coli K1 and K92 and Neisseria meningitidis groups B or C. J. Biol. Chem. 278, 15349–15359 (2003).

    Article  CAS  Google Scholar 

  43. Willis, L.M. & Whitfield, C. KPSC AND KPSS ARE RETAINING 3-DEOXY- D -manno-oct-2-ulosonic acid (Kdo) transferases involved in synthesis of bacterial capsules. Proc. Natl. Acad. Sci. USA 110, 20753–20758 (2013).

    Article  CAS  Google Scholar 

  44. Berg, O.G., Winter, R.B. & von Hippel, P.H. How do genome-regulatory proteins locate their DNA target sites? Trends Biochem. Sci. 7, 52–55 (1982).

    Article  CAS  Google Scholar 

  45. Welch, M. et al. Design parameters to control synthetic gene expression in Escherichia coli. PLoS ONE 4, e7002 (2009).

    Article  Google Scholar 

  46. Inoue, S., Lin, S.-L., Lee, Y.C. & Inoue, Y. An ultrasensitive chemical method for polysialic acid analysis. Glycobiology 11, 759–767 (2001).

    Article  CAS  Google Scholar 

  47. Galuska, S.P., Geyer, R., Mühlenhoff, M. & Geyer, H. Characterization of oligo- and polysialic acids by MALDI-TOF-MS. Anal. Chem. 79, 7161–7169 (2007).

    Article  CAS  Google Scholar 

  48. Heckman, K.L. & Pease, L.R. Gene splicing and mutagenesis by PCR-driven overlap extension. Nat. Protoc. 2, 924–932 (2007).

    Article  CAS  Google Scholar 

  49. Kavoosi, M., Creagh, A.L., Kilburn, D.G. & Haynes, C.A. Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli. Biotechnol. Bioeng. 98, 599–610 (2007).

    Article  CAS  Google Scholar 

  50. Fiebig, T. et al. Functional expression of the capsule polymerase of Neisseria meningitidis serogroup X: a new perspective for vaccine development. Glycobiology 24, 150–158 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Berger and A. Bethe for expert technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of DFG Research Unit 548 to R.G.-S. (grant no. GE 801/6-2 and Ge801/10-1).

Author information

Authors and Affiliations

Authors

Contributions

T.G.K. designed research, performed experiments, analyzed the data and wrote the manuscript. J.E. performed some in vivo screening and contributed to the kinetic analysis and preparation of DMB-oligoSia. H.L.S.F. prepared DNA constructs for single-mutant analysis. J.A. supervised the collection and analysis of CD spectra. F.F. and R.G.-S. provided guidance on experimental design and interpretation of results. R.G.-S. supervised the project and contributed to writing the manuscript. All of the authors discussed the results and gave feedback on the manuscript.

Corresponding author

Correspondence to Rita Gerardy-Schahn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–3 and Supplementary Figures 1–10. (PDF 1988 kb)

Supplementary Data Set 1

Part 1 – High-dispersity clones. Part 2 – Medium-dispersity clones. Part 3 – Low-dispersity clones. Part 4 – Reference clones. (PDF 2837 kb)

Supplementary Data Set 2

The product profiles of enzymes in the low dispersity category closely fit a Poisson distribution. (PDF 3551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keys, T., Fuchs, H., Ehrit, J. et al. Engineering the product profile of a polysialyltransferase. Nat Chem Biol 10, 437–442 (2014). https://doi.org/10.1038/nchembio.1501

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1501

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing