Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design of activated serine–containing catalytic triads with atomic-level accuracy

Abstract

A challenge in the computational design of enzymes is that multiple properties, including substrate binding, transition state stabilization and product release, must be simultaneously optimized, and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate reactivity. Following optimization by yeast display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest that the designs could provide the basis for a new class of organophosphate capture agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design strategy.
Figure 2: Design and experimental characterization of OSH55 and related designs.
Figure 3: Organophosphate reactivity of OSH55.4_1 is comparable to that of native enzymes.
Figure 4: Crystal structures of OSH55.4_1 bound to DFP.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Botos, I. & Wlodawer, A. The expanding diversity of serine hydrolases. Curr. Opin. Struct. Biol. 17, 683–690 (2007).

    Article  CAS  Google Scholar 

  2. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4524 (2002).

    Article  CAS  Google Scholar 

  3. Ekici, O.D., Paetzel, M. & Dalbey, R.E. Unconventional serine proteases: variations on the catalytic Ser/His/Asp triad configuration. Protein Sci. 17, 2023–2037 (2008).

    Article  CAS  Google Scholar 

  4. Carter, P. & Wells, J.A. Dissecting the catalytic triad of a serine protease. Nature 332, 564–568 (1988).

    Article  CAS  Google Scholar 

  5. Corey, D.R. & Craik, C.S. An investigation into the minimum requirements for peptide hydrolysis by mutation of the catalytic triad of trypsin. J. Am. Chem. Soc. 114, 1784–1790 (1992).

    Article  CAS  Google Scholar 

  6. Corey, D.R., McGrath, E.M., Vasquez, J.R., Fletterick, R.J. & Craik, C.S. An alternate geometry for the catalytic triad of serine proteases. J. Am. Chem. Soc. 114, 4905–4907 (1992).

    Article  CAS  Google Scholar 

  7. Carter, P. & Wells, J.A. Engineering enzyme specificity by “substrate-assisted catalysis”. Science 237, 394–399 (1987).

    Article  CAS  Google Scholar 

  8. Simon, G.M. & Cravatt, B.F. Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J. Biol. Chem. 285, 11051–11055 (2010).

    Article  CAS  Google Scholar 

  9. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  Google Scholar 

  10. Richter, F. et al. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J. Am. Chem. Soc. 134, 16197–16206 (2012).

    Article  CAS  Google Scholar 

  11. Weerapana, E. et al. Quantitative reactivity profiling predicts functional cysteines in proteomes. Nature 468, 790–795 (2010).

    Article  CAS  Google Scholar 

  12. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  Google Scholar 

  13. Liu, Y., Patricelli, M.P. & Cravatt, B.F. Activity-based protein profiling: the serine hydrolases. Proc. Natl. Acad. Sci. USA 96, 14694–14699 (1999).

    Article  CAS  Google Scholar 

  14. Kwasnieski, O., Verdier, L., Malacria, M. & Derat, E. Fixation of the two Tabun isomers in acetylcholinesterase: a QM/MM study. J. Phys. Chem. B 113, 10001–10007 (2009).

    Article  CAS  Google Scholar 

  15. Richter, F., Leaver-Fay, A., Khare, S.D., Bjelic, S. & Baker, D. De novo enzyme design using Rosetta3. PLoS ONE 6, e19230 (2011).

    Article  CAS  Google Scholar 

  16. Leaver-Fay, A. et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 487, 545–574 (2011).

    Article  CAS  Google Scholar 

  17. Shieh, H.S. et al. Three-dimensional structure of human cytomegalovirus protease. Nature 383, 279–282 (1996).

    Article  CAS  Google Scholar 

  18. Chao, G. et al. Isolating and engineering human antibodies using yeast surface display. Nat. Protoc. 1, 755–768 (2006).

    Article  CAS  Google Scholar 

  19. Bachovchin, D.A., Brown, S.J., Rosen, H. & Cravatt, B.F. Identification of selective inhibitors of uncharacterized enzymes by high-throughput screening with fluorescent activity-based probes. Nat. Biotechnol. 27, 387–394 (2009).

    Article  CAS  Google Scholar 

  20. Labar, G. et al. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. ChemBioChem 11, 218–227 (2010).

    Article  CAS  Google Scholar 

  21. Schwans, J.P., Sunden, F., Gonzalez, A., Tsai, Y. & Herschlag, D. Evaluating the catalytic contribution from the oxyanion hole in ketosteroid isomerase. J. Am. Chem. Soc. 133, 20052–20055 (2011).

    Article  CAS  Google Scholar 

  22. Tsai, P.C. et al. Enzymes for the homeland defense: optimizing phosphotriesterase for the hydrolysis of organophosphate nerve agents. Biochemistry 51, 6463–6475 (2012).

    Article  CAS  Google Scholar 

  23. Fischer, S., Arad, A. & Margalit, R. Lipsome-formulated enzymes for organophosphate scavenging: butyrylcholinesterase and Demeton-S. Arch. Biochem. Biophys. 434, 108–115 (2005).

    Article  CAS  Google Scholar 

  24. diTargiani, R.C., Chandrasekaran, L., Belinskaya, T. & Saxena, A. In search of a catalytic bioscavenger for the prophylaxis of nerve agent toxicity. Chem. Biol. Interact. 187, 349–354 (2010).

    Article  CAS  Google Scholar 

  25. Kim, K., Tsay, O.G., Atwood, D.A. & Churchill, D.G. Destruction and detection of chemical warfare agents. Chem. Rev. 111, 5345–5403 (2011).

    Article  CAS  Google Scholar 

  26. Pacsial-Ong, E.J. & Aguilar, Z.P. Chemical warfare agent detection: a review of current trends and future perspective. Front. Biosci. (Schol. Ed.) 5, 516–543 (2013).

    Article  Google Scholar 

  27. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  Google Scholar 

  28. Lenz, D.E. et al. Stoichiometric and catalytic scavengers as protection against nerve agent toxicity: a mini review. Toxicology 233, 31–39 (2007).

    Article  CAS  Google Scholar 

  29. Raushel, F.M. Chemical biology: catalytic detoxification. Nature 469, 310–311 (2011).

    Article  CAS  Google Scholar 

  30. Smith, A.J. et al. Structural reorganization and preorganization in enzyme active sites: comparisons of experimental and theoretically ideal active site geometries in the multistep serine esterase reaction cycle. J. Am. Chem. Soc. 130, 15361–15373 (2008).

    Article  CAS  Google Scholar 

  31. Boström, J., Greenwood, J.R. & Gottfries, J. Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J. Mol. Graph. Model. 21, 449–462 (2003).

    Article  Google Scholar 

  32. Fleishman, S.J., Khare, S.D., Koga, N. & Baker, D. Restricted sidechain plasticity in the structures of native proteins and complexes. Protein Sci. 20, 753–757 (2011).

    Article  CAS  Google Scholar 

  33. Rostovtsev, V.V., Green, L.G., Fokin, V.V. & Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(i)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 41, 2596–2599 (2002).

    Article  CAS  Google Scholar 

  34. Bachovchin, D.A. et al. Academic cross-fertilization by public screening yields a remarkable class of protein phosphatase methylesterase-1 inhibitors. Proc. Natl. Acad. Sci. USA 108, 6811–6816 (2011).

    Article  CAS  Google Scholar 

  35. Eng, J.K., Mccormack, A.L. & Yates, J.R. An approach to correlate tandem mass-spectral data of peptides with amino-acid-sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  36. Luft, J.R. et al. A deliberate approach to screening for initial crystallization conditions of biological macromolecules. J. Struct. Biol. 142, 170–179 (2003).

    Article  CAS  Google Scholar 

  37. Zbyszek Otwinowski, W.M. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  Google Scholar 

  38. Long, F., Vagin, A.A., Young, P. & Murshudov, G.N. BALBES: a molecular-replacement pipeline. Acta Crystallogr. D Biol. Crystallogr. 64, 125–132 (2008).

    Article  CAS  Google Scholar 

  39. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

  40. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  41. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Masuda and D. Milliken for helping with ABPP screening, R. Xiao and G. Kornhaber for experimental support with sample preparation and structure determination and the Rosen Lab for sharing instrumentation for performing fluopol experiments. This work was supported in part by the Defense Threat Reduction Agency (DTRA) (D.B.), the National Institute on Drug Abuse grant DA033670 (B.F.C.) and by a grant from the National Institute of General Medical Sciences Protein Structure Initiative (PSI), U54-GM094597 (J.F.H.). Fellowship support from the Sir Henry Wellcome Postdoctoral Fellowship (S.R.), NIH–National Institute of Environmental Health Sciences K99/R00 Pathways to Independence Postdoctoral Award 1K99ES020851-01 (C.W.) and Helen Hay Whitney Fellowship (M.L.M.) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.R., C.W., B.F.C. and D.B. conceived the project. S.R. and F.R. performed the computational design, S.R. expressed and purified the designed proteins. S.R. and K.Y. performed the yeast display experiments. C.W. performed the ABPP screening and mass spec experiments. C.W. and M.L.M. performed the fluopol experiments. A.P.K., A.E.M., S.L., J.S., M.S. and J.F.H. performed the crystallography experiments. S.R., C.W., B.F.C. and D.B. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to David Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–17 and Supplementary Tables 1–5. (PDF 3483 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, S., Wang, C., Yu, K. et al. Design of activated serine–containing catalytic triads with atomic-level accuracy. Nat Chem Biol 10, 386–391 (2014). https://doi.org/10.1038/nchembio.1498

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1498

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing