Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bioretrosynthetic construction of a didanosine biosynthetic pathway

Abstract

Concatenation of engineered biocatalysts into multistep pathways markedly increases their utility, but the development of generalizable assembly methods remains a major challenge. Herein we evaluate 'bioretrosynthesis', which is an application of the retrograde evolution hypothesis, for biosynthetic pathway construction. To test bioretrosynthesis, we engineered a pathway for synthesis of the antiretroviral nucleoside analog didanosine (2′,3′-dideoxyinosine). Applying both directed evolution– and structure-based approaches, we began pathway construction with a retro-extension from an engineered purine nucleoside phosphorylase and evolved 1,5-phosphopentomutase to accept the substrate 2,3-dideoxyribose 5-phosphate with a 700-fold change in substrate selectivity and threefold increased turnover in cell lysate. A subsequent retrograde pathway extension, via ribokinase engineering, resulted in a didanosine pathway with a 9,500-fold change in nucleoside production selectivity and 50-fold increase in didanosine production. Unexpectedly, the result of this bioretrosynthetic step was not a retro-extension from phosphopentomutase but rather the discovery of a fortuitous pathway-shortening bypass via the engineered ribokinase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model inosine biosynthetic pathway and proposed bioretrosynthesis of didanosine.
Figure 2: First shell residues targeted for PPM saturation mutagenesis.
Figure 3: Lineage and characterization of PPM variants through generations of evolution.
Figure 4: Optimization of RK via didanosine production assay.
Figure 5: Selectivity and activity changes in selected variant enzymes as assessed using coupled assays.
Figure 6: Progression of pathway evolution throughout enzyme engineering stages.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

NCBI Reference Sequence

Protein Data Bank

References

  1. Savile, C.K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. Liang, J. et al. Development of a biocatalytic process as an alternative to the (–)-DIP-Cl–mediated asymmetric reduction of a key intermediate of montelukast. Org. Process Res. Dev. 14, 193–198 (2010).

    Article  CAS  Google Scholar 

  3. Gao, X. et al. Directed evolution and structural characterization of a simvastatin synthase. Chem. Biol. 16, 1064–1074 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bornscheuer, U.T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Paddon, C.J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Ajikumar, P.K. et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330, 70–74 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ito, T. et al. Deciphering pactamycin biosynthesis and engineered production of new pactamycin analogues. ChemBioChem 10, 2253–2265 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, M.-Q. et al. Optimizing natural products by biosynthetic engineering: discovery of nonquinone Hsp90 inhibitors. J. Med. Chem. 51, 5494–5497 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Niu, W., Molefe, M.N. & Frost, J.W. Microbial synthesis of the energetic material precursor 1,2,4-butanetriol. J. Am. Chem. Soc. 125, 12998–12999 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Yim, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nat. Chem. Biol. 7, 445–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Ma, S.K. et al. A green-by-design biocatalytic process for atorvastatin intermediate. Green Chem. 12, 81 (2010).

    Article  CAS  Google Scholar 

  12. Pinheiro, E. et al. Examining the production costs of antiretroviral drugs. AIDS 20, 1745–1752 (2006).

    Article  PubMed  Google Scholar 

  13. Medema, M.H., van Raaphorst, R., Takano, E. & Breitling, R. Computational tools for the synthetic design of biochemical pathways. Nat. Rev. Microbiol. 10, 191–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Eriksen, D.T., Lian, J. & Zhao, H. Protein design for pathway engineering. J. Struct. Biol. 185, 234 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Horowitz, N.H. On the evolution of biochemical syntheses. Proc. Natl. Acad. Sci. USA 31, 153–157 (1945).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bachmann, B.O. Biosynthesis: is it time to go retro? Nat. Chem. Biol. 6, 390–393 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Corey, E.J. The logic of chemical synthesis—multistep synthesis of complex natural carbogenic molecules. Angew. Chem. Int. Edn Engl. 30, 455–465 (1991).

    Article  Google Scholar 

  18. Turner, N.J. & O'Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Nannemann, D.P., Kaufmann, K.W., Meiler, J. & Bachmann, B.O. Design and directed evolution of a dideoxy purine nucleoside phosphorylase. Protein Eng. Des. Sel. 23, 607–616 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hamamoto, T., Noguchi, T. & Midorikawa, Y. Phosphopentomutase of Bacillus stearothermophilus TH6–2: the enzyme and its gene ppm. Biosci. Biotechnol. Biochem. 62, 1103–1108 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Panosian, T.D. et al. Bacillus cereus phosphopentomutase is an alkaline phosphatase family member that exhibits an altered entry point into the catalytic cycle. J. Biol. Chem. 286, 8043–8054 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Patrick, W.M., Firth, A.E. & Blackburn, J.M. User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng. 16, 451–457 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Scism, R.A. & Bachmann, B.O. Five-component cascade synthesis of nucleotide analogues in an engineered self-immobilized enzyme aggregate. ChemBioChem 11, 67–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Li, J. et al. Crystal structure of Sa239 reveals the structural basis for the activation of ribokinase by monovalent cations. J. Struct. Biol. 177, 578–582 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Nocek, B. et al. Structural studies of ROK fructokinase YdhR from Bacillus subtilis: insights into substrate binding and fructose specificity. J. Mol. Biol. 406, 325–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Charrier, V. et al. Cloning and sequencing of two Enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate dependent, phosphotransferase system–catalyzed phosphorylation of a single histidyl residue. J. Biol. Chem. 272, 14166–14174 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Campobasso, N., Mathews, I.I., Begley, T.P. & Ealick, S.E. Crystal structure of 4-methyl-5-β-hydroxyethylthiazole kinase from Bacillus subtilis at 1.5 Å resolution. Biochemistry 39, 7868–7877 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Andersson, C.E. & Mowbray, S.L. Activation of ribokinase by monovalent cations. J. Mol. Biol. 315, 409–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Sigrell, J.A., Cameron, A.D., Jones, T.A. & Mowbray, S.L. Structure of Escherichia coli ribokinase in complex with ribose and dinucleotide determined to 1.8 Å resolution: insights into a new family of kinase structures. Structure 6, 183–193 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Datta, R. et al. Homology-model–guided site-specific mutagenesis reveals the mechanisms of substrate binding and product-regulation of adenosine kinase from Leishmania donovani. Biochem. J. 394, 35–42 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, Y., Dougherty, M., Downs, D.M. & Ealick, S.E. Crystal structure of an aminoimidazole riboside kinase from Salmonella enterica: implications for the evolution of the ribokinase superfamily. Structure 12, 1809–1821 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Currie, M.A. et al. ADP-dependent 6-phosphofructokinase from Pyrococcus horikoshii OT3—structure determination and biochemical characterization of PH1645. J. Biol. Chem. 284, 22664–22671 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Trinh, C.H., Asipu, A., Bonthron, D.T. & Phillips, S.E. Structures of alternatively spliced isoforms of human ketohexokinase. Acta Crystallogr. D Biol. Crystallogr. 65, 201–211 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cabrera, R. et al. The crystal complex of phosphofructokinase-2 of Escherichia coli with fructose-6-phosphate—kinetic and structural analysis of the allosteric ATP inhibition. J. Biol. Chem. 286, 5774–5783 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Miallau, L., Hunter, W.N., McSweeney, S.M. & Leonard, G.A. Structures of Staphylococcus aureus d-tagatose-6-phosphate kinase implicate domain motions in specificity and mechanism. J. Biol. Chem. 282, 19948–19957 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Sutherland, J.D., Wilson, E.J. & Wright, M.C. Directed evolution of novel biosynthetic pathways: growth of an Escherichia coli proline auxotroph on Δ1-pyrroline-2-carboxylic acid. Bioorg. Med. Chem. Lett. 3, 1185–1188 (1993).

    Article  CAS  Google Scholar 

  37. Bhabha, G. et al. Divergent evolution of protein conformational dynamics in dihydrofolate reductase. Nat. Struct. Mol. Biol. 20, 1243–1249 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bhabha, G. et al. A dynamic knockout reveals that conformational fluctuations influence the chemical step of enzyme catalysis. Science 332, 234–238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pfleger, B.F., Pitera, D.J., Smolke, D.C. & Keasling, J.D. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24, 1027–1032 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  41. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Iverson, T.M., Panosian, T.D., Birmingham, W.R., Nannemann, D.P. & Bachmann, B.O. Molecular differences between a mutase and a phosphatase: investigations of the activation step in Bacillus cereus phosphopentomutase. Biochemistry 51, 1964–1975 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Panosian, T.D., Nannemann, D.P., Bachmann, B.O. & Iverson, T.M. Crystallization and preliminary X-ray analysis of a phosphopentomutase from Bacillus cereus. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 66, 811–814 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. deGroot, H. & Noll, T. Enzymic determination of inorganic phosphates, organic phosphates and phosphate-liberating enzymes by use of nucleoside phosphorylase-xanthine oxidase (dehydrogenase)-coupled reactions. Biochem. J. 230, 255–260 (1985).

    Article  CAS  Google Scholar 

  45. Ball, E.G. Xanthine oxidase: purification and properties. J. Biol. Chem. 128, 51–67 (1939).

    CAS  Google Scholar 

  46. Bezy, V., Morin, P., Couerbe, P., Leleu, G. & Agrofoglio, L. Simultaneous analysis of several antiretroviral nucleosides in rat-plasma by high-performance liquid chromatography with UV using acetic acid/hydroxylamine buffer—test of this new volatile medium-pH for HPLC-ESI-MS/MS. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 821, 132–143 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  48. Brunger, A.T. Version 1.2 of the crystallography and NMR system. Nat. Protoc. 2, 2728–2733 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Cryst. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  51. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Holm, L. & Park, J. DaliLite workbench for protein structure comparison. Bioinformatics 16, 566–567 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank V. Phelan, K. McCulloch and C. Goodwin for assistance with data acquisition. We also thank J. Zang (Chinese Academy of Sciences), A. Joachimiak (Argonne National Laboratory and University of Chicago), J. Deutscher (Centre national de la recherche scientifique) and S. Ealick (Cornell University) for expression plasmids used in this study. This work was supported by the US National Institutes of Health (NIH) grant T32 GM065086 and the D. Stanley and Ann T. Tarbell Endowment fund (W.R.B.), NIH training grant 5T32GM008320, a US National Science Foundation individual graduate fellowship DGE:0909667 (C.A.S.), NIH training grants T32NS07491 and 5T32GM008320 (T.D.P.), NIH training grant T90 DA022873 (D.P.N.), NIH grants GM079419 (to T.M.I.) and GM077189 (B.O.B.) and the Vanderbilt Institute of Chemical Biology. The use of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the US DOE under contract no. DE-AC02-06CH11357. The use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor (grant 085P1000817). The use of the Vanderbilt robotic crystallization facility was supported by NIH grant S10 RR026915.

Author information

Authors and Affiliations

Authors

Contributions

B.O.B. supervised bioretrosynthetic studies, and T.M.I. supervised the X-ray crystallographic work. W.R.B. and D.P.N. designed assays. W.R.B. performed assays, screened mutagenesis libraries, performed kinetic characterization and tested enzymes in the biosynthetic pathway studies. C.A.S. determined the crystal structures of V158L and 4H11 PPM variants. T.D.P. determined crystal structures of wild-type PPM and the S154A and S154G variants. D.P.N. established initial synthesis routes of dideoxyribose and dideoxyribose 5-phosphate. W.R.B., C.A.S., T.M.I. and B.O.B. wrote the paper.

Corresponding authors

Correspondence to T M Iverson or Brian O Bachmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Note, Supplementary Results, Supplementary Figures 1–20 and Supplementary Tables 1–7. (PDF 4014 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birmingham, W., Starbird, C., Panosian, T. et al. Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat Chem Biol 10, 392–399 (2014). https://doi.org/10.1038/nchembio.1494

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1494

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing