Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation

Abstract

It has been proposed that inhibitors of an oncogene's effects on multipotent hematopoietic progenitor cell differentiation may change the properties of the leukemic stem cells and complement the clinical use of cytotoxic drugs. Using zebrafish, we developed a robust in vivo hematopoietic differentiation assay that reflects the activity of the oncogene AML1-ETO. Screening for modifiers of AML1-ETO–mediated hematopoietic dysregulation uncovered unexpected roles of COX-2– and β-catenin–dependent pathways in AML1-ETO function. This approach may open doors for developing therapeutics targeting oncogene function within leukemic stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Screening for chemical suppressors of AE.
Figure 2: Nimesulide does not affect AE expression in Tg(hsp:AML1-ETO) embryos.
Figure 3: Cyclooxygenase (COX) inhibitors reverse AE's effects on hematopoietic differentiation.
Figure 4: The hematopoietic phenotype of AE involves induction of the genes that encode both zebrafish COX-2 isoforms.
Figure 5: Erythroid differentiation of human myelogenous leukemia K562 cells is attenuated by AE via a COX-2–dependent mechanism.
Figure 6: AE activates β-catenin–dependent transcription through COX-2.
Figure 7: The hematopoietic differentiation effects caused by AE are dependent on β-catenin function, as indicated by in situ hybridization experiments.

Similar content being viewed by others

References

  1. Redaelli, A., Botteman, M.F., Stephens, J.M., Brandt, S. & Pashos, C.L. Economic burden of acute myeloid leukemia: a literature review. Cancer Treat. Rev. 30, 237–247 (2004).

    Article  Google Scholar 

  2. Guan, Y., Gerhard, B. & Hogge, D.E. Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML). Blood 101, 3142–3149 (2003).

    Article  CAS  Google Scholar 

  3. Terpstra, W. et al. Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture. Blood 88, 1944–1950 (1996).

    CAS  PubMed  Google Scholar 

  4. Wang, J.C. & Dick, J.E. Cancer stem cells: lessons from leukemia. Trends Cell Biol. 15, 494–501 (2005).

    Article  CAS  Google Scholar 

  5. Tenen, D.G. Disruption of differentiation in human cancer: AML shows the way. Nat. Rev. Cancer 3, 89–101 (2003).

    Article  CAS  Google Scholar 

  6. Choi, Y., Elagib, K.E., Delehanty, L.L. & Goldfarb, A.N. Erythroid inhibition by the leukemic fusion AML1-ETO is associated with impaired acetylation of the major erythroid transcription factor GATA-1. Cancer Res. 66, 2990–2996 (2006).

    Article  CAS  Google Scholar 

  7. Schwieger, M. et al. AML1-ETO inhibits maturation of multiple lymphohematopoietic lineages and induces myeloblast transformation in synergy with ICSBP deficiency. J. Exp. Med. 196, 1227–1240 (2002).

    Article  CAS  Google Scholar 

  8. Fenske, T.S. et al. Stem cell expression of the AML1/ETO fusion protein induces a myeloproliferative disorder in mice. Proc. Natl. Acad. Sci. USA 101, 15184–15189 (2004).

    Article  CAS  Google Scholar 

  9. de Guzman, C.G. et al. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol. Cell. Biol. 22, 5506–5517 (2002).

    Article  CAS  Google Scholar 

  10. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 4, 35–44 (2005).

    Article  CAS  Google Scholar 

  11. Galloway, J.L., Wingert, R.A., Thisse, C., Thisse, B. & Zon, L.I. Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev. Cell 8, 109–116 (2005).

    Article  CAS  Google Scholar 

  12. Rhodes, J. et al. Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. Dev. Cell 8, 97–108 (2005).

    Article  CAS  Google Scholar 

  13. Yeh, J.R. et al. AML1-ETO reprograms hematopoietic cell fate by downregulating scl expression. Development 135, 401–410 (2008).

    Article  CAS  Google Scholar 

  14. Yamasaki, H. et al. High degree of myeloid differentiation and granulocytosis is associated with t(8;21) smoldering leukemia. Leukemia 9, 1147–1153 (1995).

    CAS  PubMed  Google Scholar 

  15. Nakamura, H. et al. Morphological subtyping of acute myeloid leukemia with maturation (AML-M2): homogeneous pink-colored cytoplasm of mature neutrophils is most characteristic of AML-M2 with t(8;21). Leukemia 11, 651–655 (1997).

    Article  CAS  Google Scholar 

  16. Gottlicher, M. Valproic acid: an old drug newly discovered as inhibitor of histone deacetylases. Ann. Hematol. 83 (Suppl. 1), S91–S92 (2004).

    PubMed  Google Scholar 

  17. Gottlicher, M. et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20, 6969–6978 (2001).

    Article  CAS  Google Scholar 

  18. Liu, S. et al. Targeting AML1/ETO-histone deacetylase repressor complex: a novel mechanism for valproic acid-mediated gene expression and cellular differentiation in AML1/ETO-positive acute myeloid leukemia cells. J. Pharmacol. Exp. Ther. 321, 953–960 (2007).

    Article  CAS  Google Scholar 

  19. Bug, G. et al. Effect of histone deacetylase inhibitor valproic acid on progenitor cells of acute myeloid leukemia. Haematologica 92, 542–545 (2007).

    Article  CAS  Google Scholar 

  20. Grosser, T., Yusuff, S., Cheskis, E., Pack, M.A. & FitzGerald, G.A. Developmental expression of functional cyclooxygenases in zebrafish. Proc. Natl. Acad. Sci. USA 99, 8418–8423 (2002).

    Article  CAS  Google Scholar 

  21. North, T.E. et al. Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature 447, 1007–1011 (2007).

    Article  CAS  Google Scholar 

  22. Ishikawa, T.O., Griffin, K.J., Banerjee, U. & Herschman, H.R. The zebrafish genome contains two inducible, functional cyclooxygenase-2 genes. Biochem. Biophys. Res. Commun. 352, 181–187 (2007).

    Article  CAS  Google Scholar 

  23. Williams, C.S., Mann, M. & DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18, 7908–7916 (1999).

    Article  CAS  Google Scholar 

  24. Cha, Y.I. et al. Cyclooxygenase-1-derived PGE2 promotes cell motility via the G-protein-coupled EP4 receptor during vertebrate gastrulation. Genes Dev. 20, 77–86 (2006).

    Article  CAS  Google Scholar 

  25. Cha, Y.I., Kim, S.H., Solnica-Krezel, L. & Dubois, R.N. Cyclooxygenase-1 signaling is required for vascular tube formation during development. Dev. Biol. 282, 274–283 (2005).

    Article  CAS  Google Scholar 

  26. Sonoshita, M. et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in Apc(Delta 716) knockout mice. Nat. Med. 7, 1048–1051 (2001).

    Article  CAS  Google Scholar 

  27. Oshima, M. et al. Suppression of intestinal polyposis in Apc delta716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  CAS  Google Scholar 

  28. Cha, Y.I. & DuBois, R.N. NSAIDs and cancer prevention: targets downstream of COX-2. Annu. Rev. Med. 58, 239–252 (2007).

    Article  CAS  Google Scholar 

  29. Wang, D. et al. Prostaglandin E2 promotes colorectal adenoma growth via transactivation of the nuclear peroxisome proliferator-activated receptor delta. Cancer Cell 6, 285–295 (2004).

    Article  CAS  Google Scholar 

  30. Castellone, M.D., Teramoto, H., Williams, B.O., Druey, K.M. & Gutkind, J.S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science 310, 1504–1510 (2005).

    Article  CAS  Google Scholar 

  31. Shao, J., Jung, C., Liu, C. & Sheng, H. Prostaglandin E2 stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J. Biol. Chem. 280, 26565–26572 (2005).

    Article  CAS  Google Scholar 

  32. Lyman Gingerich, J., Westfall, T.A., Slusarski, D.C. & Pelegri, F. hecate, a zebrafish maternal effect gene, affects dorsal organizer induction and intracellular calcium transient frequency. Dev. Biol. 286, 427–439 (2005).

    Article  CAS  Google Scholar 

  33. Meijer, L. et al. GSK-3-selective inhibitors derived from Tyrian purple indirubins. Chem. Biol. 10, 1255–1266 (2003).

    Article  CAS  Google Scholar 

  34. van de Water, S. et al. Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development 128, 3877–3888 (2001).

    CAS  PubMed  Google Scholar 

  35. Stachel, S.E., Grunwald, D.J. & Myers, P.Z. Lithium perturbation and goosecoid expression identify a dorsal specification pathway in the pregastrula zebrafish. Development 117, 1261–1274 (1993).

    CAS  PubMed  Google Scholar 

  36. Fujino, H., West, K.A. & Regan, J.W. Phosphorylation of glycogen synthase kinase-3 and stimulation of T-cell factor signaling following activation of EP2 and EP4 prostanoid receptors by prostaglandin E2. J. Biol. Chem. 277, 2614–2619 (2002).

    Article  CAS  Google Scholar 

  37. Hino, S., Tanji, C., Nakayama, K.I. & Kikuchi, A. Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol. Cell. Biol. 25, 9063–9072 (2005).

    Article  CAS  Google Scholar 

  38. Trowbridge, J.J., Xenocostas, A., Moon, R.T. & Bhatia, M. Glycogen synthase kinase-3 is an in vivo regulator of hematopoietic stem cell repopulation. Nat. Med. 12, 89–98 (2006).

    Article  CAS  Google Scholar 

  39. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  Google Scholar 

  40. Cobas, M. et al. Beta-catenin is dispensable for hematopoiesis and lymphopoiesis. J. Exp. Med. 199, 221–229 (2004).

    Article  CAS  Google Scholar 

  41. Dinchuk, J.E. et al. Renal abnormalities and an altered inflammatory response in mice lacking cyclooxygenase II. Nature 378, 406–409 (1995).

    Article  CAS  Google Scholar 

  42. Langenbach, R. et al. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell 83, 483–492 (1995).

    Article  CAS  Google Scholar 

  43. Morham, S.G. et al. Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83, 473–482 (1995).

    Article  CAS  Google Scholar 

  44. Patton, E.E. & Zon, L.I. Taking human cancer genes to the fish: a transgenic model of melanoma in zebrafish. Zebrafish 1, 363–368 (2005).

    Article  Google Scholar 

  45. Nasevicius, A. & Ekker, S.C. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  46. Schulte-Merker, S., Ho, R.K., Herrmann, B.G. & Nusslein-Volhard, C. The protein product of the zebrafish homologue of the mouse T gene is expressed in nuclei of the germ ring and the notochord of the early embryo. Development 116, 1021–1032 (1992).

    CAS  PubMed  Google Scholar 

  47. Thompson, M.A. et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev. Biol. 197, 248–269 (1998).

    Article  CAS  Google Scholar 

  48. Bennett, C.M. et al. Myelopoiesis in the zebrafish, Danio rerio. Blood 98, 643–651 (2001).

    Article  CAS  Google Scholar 

  49. Kalev-Zylinska, M.L. et al. Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1–CBF2T1 transgene advances a model for studies of leukemogenesis. Development 129, 2015–2030 (2002).

    CAS  PubMed  Google Scholar 

  50. van de Wetering, M. et al. The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E.R. Plovie and M.N. Rivera (Massachusetts General Hospital) and H. Clevers (Hubrecht Institute) for providing reagents, and C.L. Tsai, C. Sachidanandan and the members of the Developmental Biology Laboratory for helpful discussion. J.-R.J.Y. is supported by a Career Development Award (AG031300) from the National Institute of Aging. The authors received financial support from the National Cancer Institute (CA118498 to R.T.P.), the Mattina Proctor Foundation (to D.A.S) and the Claflin Distinguished Scholar Award (to J.-R.J.Y.).

Author information

Authors and Affiliations

Authors

Contributions

J.-R.J.Y designed and performed experiments, interpreted data and wrote the manuscript; K.M.M. designed and performed experiments and interpreted data; K.E.E. and A.N.G. provided critical reagents and advice; D.A.S. provided critical advice and edited the manuscript; R.T.P. designed experiments, interpreted data and edited the manuscript.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, JR., Munson, K., Elagib, K. et al. Discovering chemical modifiers of oncogene-regulated hematopoietic differentiation. Nat Chem Biol 5, 236–243 (2009). https://doi.org/10.1038/nchembio.147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing