Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual kinase-bromodomain inhibitors for rationally designed polypharmacology

A Corrigendum to this article was published on 18 July 2014

This article has been updated

Abstract

Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multitarget profile has, however, necessitated the application of combination therapies, which can pose major clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as new targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase-bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, which are clinical PLK1 and JAK2-FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a new strategy for rational single-agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase-bromodomain inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery of kinase inhibitors that potently cross-react with bromodomains.
Figure 2: BI-2536 and TG-101348 displace BRD4 from chromatin and suppress c-Myc expression.
Figure 3: BRD4 binding modes of BI-2536 and TG-101348.
Figure 4: Structure-activity relationships for dihydropteridinone interactions with kinases and bromodomains and structural comparison of inhibitor binding modes.
Figure 5: Responses of FLT3 inhibitor–sensitive and inhibitor-resistant AML cell lines to TG-101348 and BET inhibitors.
Figure 6: Functional activities of dual kinase-bromodomain inhibitors in primary human cell disease models.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

GenBank/EMBL/DDBJ

Protein Data Bank

Change history

  • 04 April 2014

    In the version of this paper originally published, funding from the Wellcome Trust to P.F. and S.P. was not acknowledged. The acknowledgments have been corrected in the HTML and PDF versions of the article.

References

  1. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  2. Haber, D.A., Gray, N.S. & Baselga, J. The evolving war on cancer. Cell 145, 19–24 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Trusolino, L. & Bertotti, A. Compensatory pathways in oncogenic kinase signaling and resistance to targeted therapies: six degrees of separation. Cancer Discov. 2, 876–880 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Davis, M.I. et al. Comprehensive analysis of kinase inhibitor selectivity. Nat. Biotechnol. 29, 1046–1051 (2011).

    CAS  PubMed  Google Scholar 

  5. Flaherty, K.T. et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N. Engl. J. Med. 367, 1694–1703 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Corcoran, R.B. et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov. 2, 227–235 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Muller, S., Filippakopoulos, P. & Knapp, S. Bromodomains as therapeutic targets. Expert Rev. Mol. Med. 13, e29 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dawson, M.A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Picaud, S. et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res. 73, 3336–3346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Delmore, J.E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zuber, J. et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 478, 524–528 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lockwood, W.W., Zejnullahu, K., Bradner, J.E. & Varmus, H. Sensitivity of human lung adenocarcinoma cell lines to targeted inhibition of BET epigenetic signaling proteins. Proc. Natl. Acad. Sci. USA 109, 19408–19413 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng, Z. et al. Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin. Cancer Res. 19, 1748–1759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mertz, J.A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl. Acad. Sci. USA 108, 16669–16674 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith, C.C. et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485, 260–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, J. et al. INCB16562, a JAK1/2 selective inhibitor, is efficacious against multiple myeloma cells and reverses the protective effects of cytokine and stromal cell support. Neoplasia 12, 28–38 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kyttaris, V.C. Kinase inhibitors: a new class of antirheumatic drugs. Drug. Des. Devel. Ther. 6, 245–250 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sapkota, G.P. et al. BI-D1870 is a specific inhibitor of the p90 RSK (ribosomal S6 kinase) isoforms in vitro and in vivo. Biochem. J. 401, 29–38 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Hewitt, L. et al. Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1–C-Mad2 core complex. J. Cell Biol. 190, 25–34 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tong, Y. et al. Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique, potent and selective inhibitors for Pim-1 and Pim-2 kinases: chemistry, biological activities, and molecular modeling. Bioorg. Med. Chem. Lett. 18, 5206–5208 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Han, S. et al. Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. J. Biol. Chem. 284, 13193–13201 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Weigelt, B., Warne, P.H., Lambros, M.B., Reis-Filho, J.S. & Downward, J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin. Cancer Res. 19, 3533–3544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cai, Z.W. et al. Discovery of brivanib alaninate ((S)-((R)-1-(4-(4-fluoro-2-methyl-1H-indol-5-yloxy)-5-methylpyrrolo[2,1-f][1,2,4] triazin-6-yloxy)propan-2-yl)2-aminopropanoate), a novel prodrug of dual vascular endothelial growth factor receptor-2 and fibroblast growth factor receptor-1 kinase inhibitor (BMS-540215). J. Med. Chem. 51, 1976–1980 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Pardanani, A. et al. Safety and efficacy of TG101348, a selective JAK2 inhibitor, in myelofibrosis. J. Clin. Oncol. 29, 789–796 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steegmaier, M. et al. BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo. Curr. Biol. 17, 316–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Cuenda, A. et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Fedorov, O., Niesen, F.H. & Knapp, S. Kinase inhibitor selectivity profiling using differential scanning fluorimetry. Methods Mol. Biol. 795, 109–118 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Filippakopoulos, P. et al. Histone recognition and large-scale structural analysis of the human bromodomain family. Cell 149, 214–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramakrishnan, V. et al. TG101209, a novel JAK2 inhibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells. Am. J. Hematol. 85, 675–686 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kothe, M. et al. Selectivity-determining residues in Plk1. Chem. Biol. Drug Des. 70, 540–546 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Rudolph, D. et al. BI 6727, a Polo-like kinase inhibitor with improved pharmacokinetic profile and broad antitumor activity. Clin. Cancer Res. 15, 3094–3102 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Philpott, M. et al. Bromodomain-peptide displacement assays for interactome mapping and inhibitor discovery. Mol. Biosyst. 7, 2899–2908 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Picaud, S. et al. RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc. Natl. Acad. Sci. USA 110, 19754–19759 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Simard, J.R. et al. Development of a fluorescent-tagged kinase assay system for the detection and characterization of allosteric kinase inhibitors. J. Am. Chem. Soc. 131, 13286–13296 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Siu, M. et al. 2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 inhibitors. Bioorg. Med. Chem. Lett. 23, 5014–5021 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. Fedorov, O. et al. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing. Chem. Biol. 18, 67–76 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith, C.C. et al. Activity of ponatinib against clinically-relevant AC220-resistant kinase domain mutants of FLT3-ITD. Blood 121, 3165–3171 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rodriguez, M. & Bhalla, K.N. 55th American Society of Hematology Annual Meeting, abstr. 3821 (2014).

  41. Berg, E.L. et al. Chemical target and pathway toxicity mechanisms defined in primary human cell systems. J. Pharmacol. Toxicol. Methods 61, 3–15 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Bergamini, G. et al. A selective inhibitor reveals PI3Kγ dependence of TH17 cell differentiation. Nat. Chem. Biol. 8, 576–582 (2012).

    CAS  PubMed  Google Scholar 

  43. Xu, D. et al. RN486, a selective Bruton's tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J. Pharmacol. Exp. Ther. 341, 90–103 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Ott, C.J. et al. BET bromodomain inhibition targets both c-Myc and IL7R in high-risk acute lymphoblastic leukemia. Blood 120, 2843–2852 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, J.C. et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372, 739–746 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. del Barco Barrantes, I. & Nebreda, A.R. Roles of p38 MAPKs in invasion and metastasis. Biochem. Soc. Trans. 40, 79–84 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Cuenda, A. & Alessi, D.R. Use of kinase inhibitors to dissect signaling pathways. Methods Mol. Biol. 99, 161–175 (2000).

    CAS  PubMed  Google Scholar 

  48. Martin, M.P., Olesen, S.H., Georg, G.I. & Schonbrunn, E. Cyclin-dependent kinase inhibitor dinaciclib interacts with the acetyl-lysine recognition site of bromodomains. ACS Chem. Biol. 8, 2360–2365 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Vidler, L.R. et al. Discovery of novel small-molecule Inhibitors of BRD4 using structure-based virtual screening. J. Med. Chem. 56, 8073–8088 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dittmann, A. et al. The commonly used PI3-kinase probe LY294002 is an inhibitor of BET bromodomains. ACS Chem. Biol. 10.1021/cb400789e (2014).

  51. Wiseman, T., Williston, S., Brandts, J.F. & Lin, L.N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179, 131–137 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Kabsch, W. Evaluation of single-crystal X-ray diffraction data from a position-sensitive detector. J. Appl. Crystallogr. 21, 916–924 (1988).

    Article  CAS  Google Scholar 

  53. Kabsch, W. Automatic indexing of rotation diffraction patterns. J. Appl. Crystallogr. 21, 67–71 (1988).

    Article  CAS  Google Scholar 

  54. SCALA—Scale Together Multiple Observations of Reflections v. 3.3.0 (MRC Laboratory of Molecular Biology, Cambridge, 2007).

  55. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  PubMed  Google Scholar 

  56. Perrakis, A., Morris, R. & Lamzin, V.S. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6, 458–463 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  58. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

  59. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    PubMed  Google Scholar 

  60. Kedersha, N., Tisdale, S., Hickman, T. & Anderson, P. Real-time and quantitative imaging of mammalian stress granules and processing bodies. Methods Enzymol. 448, 521–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Gunawardane, R.N. et al. Transient exposure to quizartinib mediates sustained inhibition of FLT3 signaling while specifically inducing apoptosis in FLT3-activated leukemia cells. Mol. Cancer Ther. 12, 438–447 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S.M., S.P., P.F., C.W., O.F., S.M. and S.K. are grateful for support by the Structural Genomics Consortium, a registered charity (number 1097737) that receives funds from AbbVie, Boehringer Ingelheim, the Canada Foundation for Innovation, the Canadian Institutes for Health Research, Genome Canada, GlaxoSmithKline, Janssen, Lilly Canada, the Novartis Research Foundation, the Ontario Ministry of Economic Development and Innovation, Pfizer, Takeda and the Wellcome Trust (092809/Z/10/Z). P.F. and S.P. are supported by a Wellcome Trust Career-Development Fellowship (095751/Z/11/Z). This work was supported in part by a grant from the National Cancer Institute (1R01 CA166616-01) to N.P.S. and by a US National Institutes of Health National Cancer Institute grant (T32CA108462-07) to E.A.L. N.P.S. is a Leukemia and Lymphoma scholar in Clinical Research. We thank P. Gallant, T. Wehrman, E.L. Berg and P. Khanna for critically reading the manuscript and for valuable discussions, the KINOMEscan team for measuring inhibitor Kd values, the BioSeek team for performing BioMAP screens and A. Rooks, R. Nepomuceno and B. Belli for performing MV4-11 proliferation assays.

Author information

Authors and Affiliations

Authors

Contributions

P.C., J.P.H., G.P., O.F., S. Martin and L.M.W. developed in vitro binding assays, executed experiments and interpreted data. S.P. purified protein and prepared co-crystals. P.F. solved and interpreted co-crystal structures and prepared figures. P.C., C.W. and E.A.L. designed, executed and interpreted cell-based assay experiments. A.O. designed and interpreted all BioMAP studies and prepared figures. D.K.T., S.K., N.P.S., A.O. and S. Müller directed the studies and interpreted data. D.K.T. and S.K. wrote the paper with assistance from co-authors.

Corresponding authors

Correspondence to Daniel K Treiber or Stefan Knapp.

Ethics declarations

Competing interests

D.K.T., P.C., A.O.M., J.P.H., L.M.W. and G.P. are employees of DiscoveRx Corporation.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–10 and Supplementary Tables 1–4. (PDF 2519 kb)

Supplementary Data Set 1

Inhibitor library and BRD4(1) screening results (XLSX 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciceri, P., Müller, S., O'Mahony, A. et al. Dual kinase-bromodomain inhibitors for rationally designed polypharmacology. Nat Chem Biol 10, 305–312 (2014). https://doi.org/10.1038/nchembio.1471

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1471

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer