Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis

Abstract

Bacterial pathogens need to scavenge iron from their host for growth and proliferation during infection. They have evolved several strategies to do this, one being the biosynthesis and excretion of small, high-affinity iron chelators known as siderophores. The biosynthesis of siderophores is an important area of study, not only for potential therapeutic intervention but also to illuminate new enzyme chemistries. Two general pathways for siderophore biosynthesis exist: the well-characterized nonribosomal peptide synthetase (NRPS)-dependent pathway and the NRPS-independent siderophore (NIS) pathway, which relies on a different family of sparsely investigated synthetases. Here we report structural and biochemical studies of AcsD from Pectobacterium (formerly Erwinia) chrysanthemi, an NIS synthetase involved in achromobactin biosynthesis. The structures of ATP and citrate complexes provide a mechanistic rationale for stereospecific formation of an enzyme-bound (3R)-citryladenylate, which reacts with L-serine to form a likely achromobactin precursor. AcsD is a unique acyladenylate-forming enzyme with a new fold and chemical catalysis strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of various siderophores and previously proposed role of NIS synthetases in achromobactin biosynthesis.
Figure 2: Structure of AcsD from P. chrysanthemi.
Figure 3: Possible reactions catalyzed by AcsD in achromobactin biosynthesis and analysis of its carboxylic acid substrate specificity.
Figure 4: Decomposition of the enzyme-bound adenylate intermediate by nucleophilic substrates.
Figure 5: ESI-MS/MS analysis of N-citryl-L-serine and products of the AcsD-catalyzed condensation of citric acid and L-serine in negative ion mode.
Figure 6: Stereochemical investigation of citrate desymmetrization by AcsD.
Figure 7: Molecular mechanism of AcsD.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Miethke, M. & Marahiel, M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 71, 413–451 (2007).

    Article  CAS  Google Scholar 

  2. Crosa, J.H. & Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).

    Article  CAS  Google Scholar 

  3. Challis, G.L. A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. ChemBioChem 6, 601–611 (2005).

    Article  CAS  Google Scholar 

  4. Kadi, N., Oves-Costales, D., Barona-Gomez, F. & Challis, G.L. A new family of ATP-dependent oligomerization-macrocyclization biocatalysts. Nat. Chem. Biol. 3, 652–656 (2007).

    Article  CAS  Google Scholar 

  5. Kadi, N., Song, L. & Challis, G.L. Bisucaberin biosynthesis: an adenylating domain of the BibC multienzyme catalyzes cyclodimerization of N-hydroxy-N-succinylcadaverine. Chem. Commun. (Camb) 5119–5121 (2008).

  6. Oves-Costales, D. et al. Enzymatic logic of anthrax stealth siderophore biosynthesis: AsbA catalyzes ATP-dependent condensation of citric acid and spermidine. J. Am. Chem. Soc. 129, 8416–8417 (2007).

    Article  CAS  Google Scholar 

  7. Oves-Costales, D. et al. Petrobactin biosynthesis: AsbB catalyses ATP-dependent condensation of spermidine with N8-citryl-spermdine and its N1-(3,4-dihydroxybenzoyl) derivative. Chem. Commun. (Camb) 4034–4036 (2008).

  8. Kadi, N., Arbache, S., Song, L.J., Oves-Costales, D. & Challis, G.L. Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species: PubC catalyzes cyclodimerization of N-hydroxy-N-succinyiputrescine. J. Am. Chem. Soc. 130, 10458–10459 (2008).

    Article  CAS  Google Scholar 

  9. Lee, J.Y. et al. Biosynthetic analysis of the petrobactin siderophore pathway from Bacillus anthracis. J. Bacteriol. 189, 1698–1710 (2007).

    Article  CAS  Google Scholar 

  10. Pfleger, B.F. et al. Characterization and analysis of early enzymes for petrobactin biosynthesis in Bacillus anthracis. Biochemistry 46, 4147–4157 (2007).

    Article  CAS  Google Scholar 

  11. Lautru, S. & Challis, G.L. Substrate recognition by nonribosomal peptide synthetase multi-enzymes. Microbiology 150, 1629–1636 (2004).

    Article  CAS  Google Scholar 

  12. Challis, G.L. & Naismith, J.H. Structural aspects of non-ribosomal peptide biosynthesis. Curr. Opin. Struct. Biol. 14, 748–756 (2004).

    Article  CAS  Google Scholar 

  13. Münzinger, M., Budzikiewicz, H., Expert, D., Enard, C. & Meyer, J.M. Achromobactin, a new citrate siderophore of Erwinia chrysanthemi. Z. Naturforsch. [C] 55, 328–332 (2000).

    Article  Google Scholar 

  14. Franza, T., Mahe, B. & Expert, D. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol. Microbiol. 55, 261–275 (2005).

    Article  CAS  Google Scholar 

  15. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  CAS  Google Scholar 

  16. Holm, L. & Sander, C. Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993).

    Article  CAS  Google Scholar 

  17. Krissinel, E. & Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 60, 2256–2268 (2004).

    Article  CAS  Google Scholar 

  18. Walker, E.H. et al. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 6, 909–919 (2000).

    Article  CAS  Google Scholar 

  19. Ginder, N.D., Binkowski, D.J., Fromm, H.J. & Honzatko, R.B. Nucleotide complexes of Escherichia coli phosphoribosylaminoimidazole succinocarboxamide synthetase. J. Biol. Chem. 281, 20680–20688 (2006).

    Article  CAS  Google Scholar 

  20. Steinbacher, S. et al. The crystal structure of the Physarum polycephalum actin-fragmin kinase: an atypical protein kinase with a specialized substrate-binding domain. EMBO J. 18, 2923–2929 (1999).

    Article  CAS  Google Scholar 

  21. Wu, M.X. & Hill, K.A. A continuous spectrophotometric assay for the aminoacylation of transfer RNA by alanyl-transfer RNA synthetase. Anal. Biochem. 211, 320–323 (1993).

    Article  CAS  Google Scholar 

  22. Liu, C.F. & Tam, J.P. Chemical ligation approach to form a peptide bond between unprotected peptide segments. Concept and model study. J. Am. Chem. Soc. 116, 4149–4153 (1994).

    Article  CAS  Google Scholar 

  23. Fulda, M., Heinz, E. & Wolter, F.P. The fadD gene of Escherichia coli K12 is located close to rnd at 39.6 min of the chromosomal map and is a new member of the AMP-binding protein family. Mol. Gen. Genet. 242, 241–249 (1994).

    Article  CAS  Google Scholar 

  24. May, J.J., Kessler, N., Marahiel, M.A. & Stubbs, M.T. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc. Natl. Acad. Sci. USA 99, 12120–12125 (2002).

    Article  CAS  Google Scholar 

  25. Jogl, G. & Tong, L. Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP. Biochemistry 43, 1425–1431 (2004).

    Article  CAS  Google Scholar 

  26. Conti, E., Stachelhaus, T., Marahiel, M.A. & Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16, 4174–4183 (1997).

    Article  CAS  Google Scholar 

  27. Nakatsu, T. et al. Structural basis for the spectral difference in luciferase bioluminescence. Nature 440, 372–376 (2006).

    Article  CAS  Google Scholar 

  28. Chang, K.H., Xiang, H. & Dunaway-Mariano, D. Acyl-adenylate motif of the acyl-adenylate/thioester-forming enzyme superfamily: a site-directed mutagenesis study with the Pseudomonas sp. strain CBS3 4-chlorobenzoate:coenzyme A ligase. Biochemistry 36, 15650–15659 (1997).

    Article  CAS  Google Scholar 

  29. Gulick, A.M., Starai, V.J., Horswill, A.R., Homick, K.M. & Escalante-Semerena, J.C. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42, 2866–2873 (2003).

    Article  CAS  Google Scholar 

  30. Taylor, S.S. et al. Catalytic subunit of cyclic AMP-dependent protein kinase: structure and dynamics of the active site cleft. Pharmacol. Ther. 82, 133–141 (1999).

    Article  CAS  Google Scholar 

  31. Thoden, J.B., Firestine, S.M., Benkovic, S.J. & Holden, H.M. PurT-encoded glycinamide ribonucleotide transformylase. Accommodation of adenosine nucleotide analogs within the active site. J. Biol. Chem. 277, 23898–23908 (2002).

    Article  CAS  Google Scholar 

  32. Cendrowski, S., MacArthur, W. & Hanna, P. Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol. Microbiol. 51, 407–417 (2004).

    Article  CAS  Google Scholar 

  33. Abergel, R.J. et al. Anthrax pathogen evades the mammalian immune system through stealth siderophore production. Proc. Natl. Acad. Sci. USA 103, 18499–18503 (2006).

    Article  CAS  Google Scholar 

  34. McMahon, S.A. et al. Purification, crystallization and data collection of Pectobacterium chrysanthemi AcsD, a type A siderophore synthetase. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 64, 1052–1055 (2008).

    Article  CAS  Google Scholar 

  35. Guerrero, S.A., Hecht, H.J., Hofmann, B., Biebl, H. & Singh, M. Production of selenomethionine-labelled proteins using simplified culture conditions and generally applicable host/vector systems. Appl. Microbiol. Biotechnol. 56, 718–723 (2001).

    Article  CAS  Google Scholar 

  36. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  37. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    Article  CAS  Google Scholar 

  38. Terwilliger, T.C. Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr. 56, 965–972 (2000).

    Article  CAS  Google Scholar 

  39. Cowtan, K. The Buccaneer software for automated model building. 1. Tracing protein chains. Acta Crystallogr. D Biol. Crystallogr. 62, 1002–1011 (2006).

    Article  Google Scholar 

  40. McRee, D.E. XtalView Xfit - A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  41. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  42. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).

    Article  CAS  Google Scholar 

  43. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Expert (Université Paris 6) for kindly providing pL9G1 and P. Grice (University of Cambridge) for assistance with acquisition of 13C NMR of labeled and unlabeled N-citryl-L-serine. This work was supported by Biotechnology Biological Sciences Research Council (BBSRC) (grant reference BB/S/B14450) and the Scottish Funding Council (grant references SULSA and SSPF).

Author information

Authors and Affiliations

Authors

Contributions

S.S. purified, crystallized and determined structures of all co-complexes, developed fluorescence-based activity assay, made and assayed mutants, analyzed complexes and biochemical data and participated in the writing of the paper. N.K. cloned and overexpressed acsD in Escherichia coli, developed conditions for the purification and stabilization of recombinant AcsD, developed biochemical assays, isolated N-citryl-L-serine from incubations and structurally characterized it, carried out the experiments to determine the stereochemistry of the citric acid residue in N-citryl-L-serine and participated in data interpretation and writing of the paper. S.A.M. developed conditions for the purification of, stabilization of and crystallization of apo recombinant AcsD and refined the crystal structure of apo recombinant AcsD. L.S. acquired and assisted with the interpretation of spectroscopic data. D.O.-C. developed the procedure for determination of the stereochemistry of the citric acid residue in N-citryl-L-serine and participated in interpretation of the data. K.A.J. traced and refined the first model of the apo structure. M.O., H.L. and L.G.C. assisted with the structural biology. C.H.B. assisted in the mass spectrometric analyses. M.F.W. participated in analyzing data and writing the paper. G.L.C. participated in experiment design, data interpretation and writing of the paper. J.H.N. participated in experiment design, data interpretation and writing of the paper.

Corresponding authors

Correspondence to Gregory L Challis or James H Naismith.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 and Supplementary Methods (PDF 2964 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmelz, S., Kadi, N., McMahon, S. et al. AcsD catalyzes enantioselective citrate desymmetrization in siderophore biosynthesis. Nat Chem Biol 5, 174–182 (2009). https://doi.org/10.1038/nchembio.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.145

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing