Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis

Abstract

The recent discovery of fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis (Mtb) provided a new perspective of fatty acid activation. These proteins convert fatty acids to the corresponding adenylates, which are intermediates of acyl-CoA–synthesizing fatty acyl-CoA ligases (FACLs). Presently, it is not evident how obligate pathogens such as Mtb have evolved such new themes of functional versatility and whether the activation of fatty acids to acyladenylates could indeed be a general mechanism. Here, based on elucidation of the first structure of an FAAL protein and by generating loss-of-function and gain-of-function mutants that interconvert FAAL and FACL activities, we demonstrate that an insertion motif dictates formation of acyladenylate. Because FAALs in Mtb are crucial nodes in the biosynthetic network of virulent lipids, inhibitors directed against these proteins provide a unique multipronged approach to simultaneously disrupting several pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dichotomy in the metabolic functions of FAALs and FACLs.
Figure 2: Crystal structure of FAAL28 N-terminal domain and structural analysis of the FAAL insertion.
Figure 3: Interconversion of FACL and FAAL activities.
Figure 4: Inhibition of FAAL and FACL enzymes by acylsulfamoyl analogs.
Figure 5: Characterization of FAAL in other actinomycetes.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Trivedi, O.A. et al. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428, 441–445 (2004).

    Article  CAS  Google Scholar 

  2. Weber, T. & Marahiel, M.A. Exploring the domain structure of modular nonribosomal peptide synthetases. Structure 9, R3–R9 (2001).

    Article  CAS  Google Scholar 

  3. Fischbach, M.A. & Walsh, C.T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  4. Stachelhaus, T., Mootz, H.D. & Marahiel, M.A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999).

    Article  CAS  Google Scholar 

  5. Gomez, J.E. & McKinney, J.D.M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb.) 84, 29–44 (2004).

    Article  Google Scholar 

  6. World Health Organization. Global tuberculosis control: surveillance, planning, financing (WHO/HTM/TB/2008.393) (World Health Organization Geneva, 2008).

  7. Barry, C.E., Crick, D.C. & McNeil, M.R. Targeting the formation of the cell wall core of M. tuberculosis. Infect. Disord. Drug Targets 7, 182–202 (2007).

    Article  CAS  Google Scholar 

  8. Brennan, P.J. & Crick, D.C. The cell-wall core of Mycobacterium tuberculosis in the context of drug discovery. Curr. Top. Med. Chem. 7, 475–488 (2007).

    Article  CAS  Google Scholar 

  9. Gokhale, R.S., Sankaranarayanan, R. & Mohanty, D. Versatility of polyketide synthases in generating metabolic diversity. Curr. Opin. Struct. Biol. 17, 736–743 (2007).

    Article  CAS  Google Scholar 

  10. Gokhale, R.S., Saxena, P., Chopra, T. & Mohanty, D. Versatile polyketide enzymatic machinery for the biosynthesis of complex mycobacterial lipids. Nat. Prod. Rep. 24, 267–277 (2007).

    Article  CAS  Google Scholar 

  11. Jackson, M., Stadthagen, G. & Gicquel, B. Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: biosynthesis, transport, regulation and biological activities. Tuberculosis (Edinb.) 87, 78–86 (2007).

    Article  CAS  Google Scholar 

  12. Kolattukudy, P.E., Fernandes, N.D., Azad, A.K., Fitzmaurice, A.M. & Sirakova, T.D. Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol. Microbiol. 24, 263–270 (1997).

    Article  CAS  Google Scholar 

  13. Krithika, R. et al. A genetic locus required for iron acquisition in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 103, 2069–2074 (2006).

    Article  CAS  Google Scholar 

  14. Trivedi, O.A. et al. Dissecting the mechanism and assembly of a complex virulence mycobacterial lipid. Mol. Cell 17, 631–643 (2005).

    Article  CAS  Google Scholar 

  15. Portevin, D. et al. The acyl-AMP ligase FadD32 and AccD4-containing acyl-CoA carboxylase are required for the synthesis of mycolic acids and essential for mycobacterial growth: identification of the carboxylation product and determination of the acyl-CoA carboxylase components. J. Biol. Chem. 280, 8862–8874 (2005).

    Article  CAS  Google Scholar 

  16. Cole, S.T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  17. Fontan, P., Aris, V., Ghanny, S., Soteropoulos, P. & Smith, I. Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect. Immun. 76, 717–725 (2008).

    Article  CAS  Google Scholar 

  18. Van der Geize, R. et al. A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc. Natl. Acad. Sci. USA 104, 1947–1952 (2007).

    Article  CAS  Google Scholar 

  19. Conti, E., Franks, N.P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996).

    Article  CAS  Google Scholar 

  20. Gulick, A.M., Starai, V.J., Horswill, A.R., Homick, K.M. & Escalante-Semerena, J.C. The 1.75 A crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42, 2866–2873 (2003).

    Article  CAS  Google Scholar 

  21. May, J.J., Kessler, N., Marahiel, M.A. & Stubbs, M.T. Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc. Natl. Acad. Sci. USA 99, 12120–12125 (2002).

    Article  CAS  Google Scholar 

  22. Hisanaga, Y. et al. Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer. J. Biol. Chem. 279, 31717–31726 (2004).

    Article  CAS  Google Scholar 

  23. Goyal, A. et al. Crystallization and preliminary X-ray crystallographic studies of the N-terminal domain of FadD28, a fatty-acyl AMP ligase from Mycobacterium tuberculosis. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 350–352 (2006).

    Article  CAS  Google Scholar 

  24. Conti, E., Stachelhaus, T., Marahiel, M.A. & Brick, P. Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J. 16, 4174–4183 (1997).

    Article  CAS  Google Scholar 

  25. Linne, U., Schafer, A., Stubbs, M.T. & Marahiel, M.A. Aminoacyl-coenzyme A synthesis catalyzed by adenylation domains. FEBS Lett. 581, 905–910 (2007).

    Article  CAS  Google Scholar 

  26. Nakama, T., Nureki, O. & Yokoyama, S. Structural basis for the recognition of isoleucyl-adenylate and an antibiotic, mupirocin, by isoleucyl-tRNA synthetase. J. Biol. Chem. 276, 47387–47393 (2001).

    Article  CAS  Google Scholar 

  27. Ferreras, J.A., Ryu, J.S., Di Lello, F., Tan, D.S. & Quadri, L.E. Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat. Chem. Biol. 1, 29–32 (2005).

    Article  CAS  Google Scholar 

  28. Somu, R.V. et al. Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J. Med. Chem. 49, 31–34 (2006).

    Article  CAS  Google Scholar 

  29. Copeland, R.A. Tight binding inhibitors. in Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis##305–317 (Wiley-VCH, New York, 2000).

    Chapter  Google Scholar 

  30. Hansen, D.B., Bumpus, S.B., Aron, Z.D., Kelleher, N.L. & Walsh, C.T. The loading module of mycosubtilin: an adenylation domain with fatty acid selectivity. J. Am. Chem. Soc. 129, 6366–6367 (2007).

    Article  CAS  Google Scholar 

  31. Black, P.N. & DiRusso, C.C. Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim. Biophys. Acta 1771, 286–298 (2007).

    Article  CAS  Google Scholar 

  32. Wang, F., Langley, R., Gulten, G., Wang, L. & Sacchettini, J.C. Identification of a type III thioesterase reveals the function of an operon crucial for Mtb virulence. Chem. Biol. 14, 543–551 (2007).

    Article  CAS  Google Scholar 

  33. Arora, P., Vats, A., Saxena, P., Mohanty, D. & Gokhale, R.S. Promiscuous fatty acyl CoA ligases produce acyl-CoA and acyl-SNAC precursors for polyketide biosynthesis. J. Am. Chem. Soc. 127, 9388–9389 (2005).

    Article  CAS  Google Scholar 

  34. Lu, Y.J. et al. Acyl-phosphates initiate membrane phospholipid synthesis in Gram-positive pathogens. Mol. Cell 23, 765–772 (2006).

    Article  CAS  Google Scholar 

  35. Jiang, Y., Chan, C.H. & Cronan, J.E. The soluble acyl-acyl carrier protein synthetase of Vibrio harveyi B392 is a member of the medium chain acyl-CoA synthetase family. Biochemistry 45, 10008–10019 (2006).

    Article  CAS  Google Scholar 

  36. Kholodenko, B.N. Cell-signalling dynamics in time and space. Nat. Rev. Mol. Cell Biol. 7, 165–176 (2006).

    Article  CAS  Google Scholar 

  37. Strogatz, S.H. Exploring complex networks. Nature 410, 268–276 (2001).

    Article  CAS  Google Scholar 

  38. Morphy, R. & Rankovic, Z. Designed multiple ligands. An emerging drug discovery paradigm. J. Med. Chem. 48, 6523–6543 (2005).

    Article  CAS  Google Scholar 

  39. Bloch, H. & Segal, W. Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro. J. Bacteriol. 72, 132–141 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jain, M. et al. Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling. Proc. Natl. Acad. Sci. USA 104, 5133–5138 (2007).

    Article  CAS  Google Scholar 

  41. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  42. Brunger, A.T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr. 54, 905–921 (1998).

    Article  CAS  Google Scholar 

  43. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  44. Evans, S.V. SETOR: hardware-lighted three-dimensional solid model representations of macromolecules. J. Mol. Graph. 11, 134–138 (1993).

    Article  CAS  Google Scholar 

  45. Barton, G.J. ALSCRIPT: a tool to format multiple sequence alignments. Protein Eng. 6, 37–40 (1993).

    Article  CAS  Google Scholar 

  46. Castro-Pichel, J. et al. Synthesis and antiviral activity of 5′-O-(substituted) sulfamoyl pyrimidine nucleosides. Arch. Pharm. (Weinheim) 322, 11–15 (1989).

    Article  CAS  Google Scholar 

  47. Morrison, J.F. & Walsh, C.T. The behavior and significance of slow-binding enzyme inhibitors. Adv. Enzymol. 61, 201–301 (1988).

    CAS  PubMed  Google Scholar 

  48. Phetsuksiri, B. et al. Antimycobacterial activities of isoxyl and new derivatives through the inhibition of mycolic acid synthesis. Antimicrob. Agents Chemother. 43, 1042–1051 (1999).

    Article  CAS  Google Scholar 

  49. Camacho, L.R. et al. Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis. Evidence that this lipid is involved in the cell wall permeability barrier. J. Biol. Chem. 276, 19845–19854 (2001).

    Article  CAS  Google Scholar 

  50. Cox, J.S., Chen, B., McNeil, M. & Jacobs, W.R. Jr. Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice. Nature 402, 79–83 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Eltis (University of British Columbia) for Rhodococcus sp. RHA1 strain and S. Cole (Pasteur Research Institute, France) for the M. tuberculosis BAC genomic DNA library. P.A., A.G. and E.R. are Senior Research Fellows of the Council of Scientific and Industrial Research, India. R.S. is supported by a Wellcome Trust International Senior Research Fellowship in India. R.S.G. is supported by a Howard Hughes Medical Institute International Fellowship. This work is also partially supported by a Swarnajayanti Fellowship from the Department of Science and Technology of India and by a Centre of Excellence Grant from the Department of Biotechnology of India.

Author information

Authors and Affiliations

Authors

Contributions

P.A., A.G., V.T.N., R.S. and R.S.G. designed the experiments, analyzed the data and wrote the manuscript. E.R. and M.Y. participated in structural studies. P.V., R.G. and O.A.T. participated in biochemical and mechanistic studies. D.M. and A.T. provided valuable advice.

Corresponding authors

Correspondence to Rajan Sankaranarayanan or Rajesh S Gokhale.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–4 and Supplementary Methods (PDF 657 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, P., Goyal, A., Natarajan, V. et al. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis. Nat Chem Biol 5, 166–173 (2009). https://doi.org/10.1038/nchembio.143

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing