Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

VMAT2 identified as a regulator of late-stage β-cell differentiation

Abstract

Cell replacement therapy for diabetes mellitus requires cost-effective generation of high-quality, insulin-producing, pancreatic β cells from pluripotent stem cells. Development of this technique has been hampered by a lack of knowledge of the molecular mechanisms underlying β-cell differentiation. The present study identified reserpine and tetrabenazine (TBZ), both vesicular monoamine transporter 2 (VMAT2) inhibitors, as promoters of late-stage differentiation of Pdx1-positive pancreatic progenitor cells into Neurog3 (referred to henceforth as Ngn3)-positive endocrine precursors. VMAT2-controlled monoamines, such as dopamine, histamine and serotonin, negatively regulated β-cell differentiation. Reserpine or TBZ acted additively with dibutyryl adenosine 3',5'-cyclic AMP, a cell-permeable cAMP analog, to potentiate differentiation of embryonic stem (ES) cells into β cells that exhibited glucose-stimulated insulin secretion. When ES cell–derived β cells were transplanted into AKITA diabetic mice, the cells reversed hyperglycemia. Our protocol provides a basis for the understanding of β-cell differentiation and its application to a cost-effective production of functional β cells for cell therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reserpine identified as a chemical that enhanced ES cell differentiation into pancreatic β cells.
Figure 2: VMAT2- and monoamine-dependent suppression of pancreatic β-cell differentiation.
Figure 3: VMAT2 inhibition increased differentiation into Ngn3-GFP+ cells.
Figure 4: TBZ and dBu-cAMP additively potentiated differentiation into β cells.
Figure 5: Characterization of the purified ES cell–derived Ins+ and Pdx-GFP+ cells.
Figure 6: Transplanted cells reversed hyperglycemia and glucose tolerance.

Similar content being viewed by others

References

  1. Jonsson, J., Carlsson, L., Edlund, T. & Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 371, 606–609 (1994).

    Article  CAS  Google Scholar 

  2. Gu, G., Dubauskaite, J. & Melton, D.A. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129, 2447–2457 (2002).

    CAS  PubMed  Google Scholar 

  3. Gradwohl, G., Dierich, A., LeMeur, M. & Guillemot, F. neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97, 1607–1611 (2000).

    Article  CAS  Google Scholar 

  4. Puri, S. & Hebrok, M. Cellular plasticity within the pancreas—lessons learned from development. Dev. Cell 18, 342–356 (2010).

    Article  CAS  Google Scholar 

  5. D′Amour, K.A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    Article  Google Scholar 

  6. Skoudy, A. et al. Transforming growth factor (TGF)β, fibroblast growth factor (FGF) and retinoid signalling pathways promote pancreatic exocrine gene expression in mouse embryonic stem cells. Biochem. J. 379, 749–756 (2004).

    Article  CAS  Google Scholar 

  7. D′Amour, K.A. et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24, 1392–1401 (2006).

    Article  Google Scholar 

  8. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    Article  CAS  Google Scholar 

  9. Chen, S. et al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage. Nat. Chem. Biol. 5, 258–265 (2009).

    Article  CAS  Google Scholar 

  10. Shiraki, N. et al. Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells 26, 874–885 (2008).

    Article  CAS  Google Scholar 

  11. Higuchi, Y. et al. Synthesized basement membranes direct the differentiation of mouse embryonic stem cells into pancreatic lineages. J. Cell Sci. 123, 2733–2742 (2010).

    Article  CAS  Google Scholar 

  12. Wang, Y.M. et al. Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron 19, 1285–1296 (1997).

    Article  CAS  Google Scholar 

  13. Pothos, E.N. et al. Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. J. Neurosci. 20, 7297–7306 (2000).

    Article  CAS  Google Scholar 

  14. Vergo, S., Johansen, J.L., Leist, M. & Lotharius, J. Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Res. 1185, 18–32 (2007).

    Article  CAS  Google Scholar 

  15. Eiden, L.E. & Weihe, E. VMAT2: a dynamic regulator of brain monoaminergic neuronal function interacting with drugs of abuse. Ann. NY Acad. Sci. 1216, 86–98 (2011).

    Article  CAS  Google Scholar 

  16. Erickson, J.D., Schafer, M.K., Bonner, T.I., Eiden, L.E. & Weihe, E. Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proc. Natl. Acad. Sci. USA 93, 5166–5171 (1996).

    Article  CAS  Google Scholar 

  17. Anlauf, M. et al. Expression of the two isoforms of the vesicular monoamine transporter (VMAT1 and VMAT2) in the endocrine pancreas and pancreatic endocrine tumors. J. Histochem. Cytochem. 51, 1027–1040 (2003).

    Article  CAS  Google Scholar 

  18. Simpson, N.R. et al. Visualizing pancreatic β-cell mass with [11C]DTBZ. Nucl. Med. Biol. 33, 855–864 (2006).

    Article  CAS  Google Scholar 

  19. Saisho, Y. et al. Relationship between pancreatic vesicular monoamine transporter 2 (VMAT2) and insulin expression in human pancreas. J. Mol. Histol. 39, 543–551 (2008).

    Article  CAS  Google Scholar 

  20. Grimsby, J., Chen, K., Wang, L.J., Lan, N.C. & Shih, J.C. Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc. Natl. Acad. Sci. USA 88, 3637–3641 (1991).

    Article  CAS  Google Scholar 

  21. Gu, G. et al. Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 131, 165–179 (2004).

    Article  CAS  Google Scholar 

  22. Kroeze, W.K., Sheffler, D.J. & Roth, B.L. G-protein-coupled receptors at a glance. J. Cell Sci. 116, 4867–4869 (2003).

    Article  CAS  Google Scholar 

  23. Seino, S., Shibasaki, T. & Minami, K. Dynamics of insulin secretion and the clinical implications for obesity and diabetes. J. Clin. Invest. 121, 2118–2125 (2011).

    Article  CAS  Google Scholar 

  24. Lo, K.W., Kan, H.M., Ashe, K.M. & Laurencin, C.T. The small molecule PKA-specific cyclic AMP analogue as an inducer of osteoblast-like cells differentiation and mineralization. J. Tissue Eng. Regen. Med. 6, 40–48 (2012).

    Article  CAS  Google Scholar 

  25. Mei, F.C. et al. Differential signaling of cyclic AMP: opposing effects of exchange protein directly activated by cyclic AMP and cAMP-dependent protein kinase on protein kinase B activation. J. Biol. Chem. 277, 11497–11504 (2002).

    Article  CAS  Google Scholar 

  26. Kelley, G.G. et al. Glucose-dependent potentiation of mouse islet insulin secretion by Epac activator 8-pCPT-2′-O-Me-cAMP-AM. Islets 1, 260–265 (2009).

    Article  Google Scholar 

  27. Wang, J. et al. A mutation in the insulin 2 gene induces diabetes with severe pancreatic β-cell dysfunction in the Mody mouse. J. Clin. Invest. 103, 27–37 (1999).

    Article  CAS  Google Scholar 

  28. Mochida, T. et al. Time-dependent changes in the plasma amino acid concentration in diabetes mellitus. Mol. Genet. Metab. 103, 406–409 (2011).

    Article  CAS  Google Scholar 

  29. Hong, E.G. et al. Nonobese, insulin-deficient Ins2Akita mice develop type 2 diabetes phenotypes including insulin resistance and cardiac remodeling. Am. J. Physiol. Endocrinol. Metab. 293, E1687–E1696 (2007).

    Article  CAS  Google Scholar 

  30. Schäfer, M.K. et al. Species-specific vesicular monoamine transporter 2 (VMAT2) expression in mammalian pancreatic β cells: implications for optimising radioligand-based human β cell mass (BCM) imaging in animal models. Diabetologia 56, 1047–1056 (2013).

    Article  Google Scholar 

  31. Harris, P.E. et al. VMAT2 gene expression and function as it applies to imaging β-cell mass. J. Mol. Med. 86, 5–16 (2008).

    Article  CAS  Google Scholar 

  32. Fülöp, A.K. et al. Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology 144, 4306–4314 (2003).

    Article  Google Scholar 

  33. Buchanan, T.A. & Xiang, A.H. Gestational diabetes mellitus. J. Clin. Invest. 115, 485–491 (2005).

    Article  CAS  Google Scholar 

  34. Kim, H. et al. Serotonin regulates pancreatic β cell mass during pregnancy. Nat. Med. 16, 804–808 (2010).

    Article  CAS  Google Scholar 

  35. Rubí, B. et al. Dopamine D2-like receptors are expressed in pancreatic β cells and mediate inhibition of insulin secretion. J. Biol. Chem. 280, 36824–36832 (2005).

    Article  Google Scholar 

  36. Ericson, L.E., Hakanson, R. & Lundquist, I. Accumulation of dopamine in mouse pancreatic B-cells following injection of l-DOPA. Localization to secretory granules and inhibition of insulin secretion. Diabetologia 13, 117–124 (1977).

    Article  CAS  Google Scholar 

  37. Zern, R.T., Bird, J.L. & Feldman, J.M. Effect of increased pancreatic islet norepinephrine, dopamine and serotonin concentration on insulin secretion in the golden hamster. Diabetologia 18, 341–346 (1980).

    Article  CAS  Google Scholar 

  38. Seeman, P. et al. The dopaminergic stabilizer ASP2314/ACR16 selectively interacts with D2High receptors. Synapse 63, 930–934 (2009).

    Article  CAS  Google Scholar 

  39. Braden, M.R., Parrish, J.C., Naylor, J.C. & Nichols, D.E. Molecular interaction of serotonin 5–HT2A receptor residues Phe339(6.51) and Phe340(6.52) with superpotent N-benzyl phenethylamine agonists. Mol. Pharmacol. 70, 1956–1964 (2006).

    Article  CAS  Google Scholar 

  40. Peakman, M.C. & Hill, S.J. Endogenous expression of histamine H1 receptors functionally coupled to phosphoinositide hydrolysis in C6 glioma cells: regulation by cyclic AMP. Br. J. Pharmacol. 113, 1554–1560 (1994).

    Article  CAS  Google Scholar 

  41. El Mestikawy, S., Wallen-Mackenzie, A., Fortin, G.M., Descarries, L. & Trudeau, L.E. From glutamate co-release to vesicular synergy: vesicular glutamate transporters. Nat. Rev. Neurosci. 12, 204–216 (2011).

    Article  CAS  Google Scholar 

  42. Yao, J., Erickson, J.D. & Hersh, L.B. Protein kinase A affects trafficking of the vesicular monoamine transporters in PC12 cells. Traffic 5, 1006–1016 (2004).

    Article  CAS  Google Scholar 

  43. Xie, T., Chen, M. & Weinstein, L.S. Pancreas-specific Gsα deficiency has divergent effects on pancreatic α- and β-cell proliferation. J. Endocrinol. 206, 261–269 (2010).

    Article  CAS  Google Scholar 

  44. Herrera, P.L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 127, 2317–2322 (2000).

    CAS  PubMed  Google Scholar 

  45. Murtaugh, L.C. Pancreas and β-cell development: from the actual to the possible. Development 134, 427–438 (2007).

    Article  CAS  Google Scholar 

  46. Collombat, P. et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently β cells. Cell 138, 449–462 (2009).

    Article  CAS  Google Scholar 

  47. Thorel, F. et al. Conversion of adult pancreatic α-cells to β-cells after extreme β-cell loss. Nature 464, 1149–1154 (2010).

    Article  CAS  Google Scholar 

  48. Xie, R. et al. Dynamic chromatin remodeling mediated by polycomb proteins orchestrates pancreatic differentiation of human embryonic stem cells. Cell Stem Cell 12, 224–237 (2013).

    Article  CAS  Google Scholar 

  49. Kelly, O.G. et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat. Biotechnol. 29, 750–756 (2011).

    Article  CAS  Google Scholar 

  50. Yasunami, Y. et al. Vα14 NK T cell-triggered IFN-γ production by Gr-1+CD11b+ cells mediates early graft loss of syngeneic transplanted islets. J. Exp. Med. 202, 913–918 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Gene Technology Center and Center for Animal Resources and Development at Kumamoto University for technical assistance. This work was supported by the Funding Program for Next Generation World-Leading Researchers (to S.K. (no. LS099) and M.U.); the Japan Society for the Promotion of Science, the Realization of Regenerative Medicine (to S.K. and M.U.); the Program for Leading Graduate Schools 'HIGO' (awarded to S.K.); Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (no. 21390280 to S.K. and no. 22790653 to D. Sakano); and the Collaborative Research Program of Institute for Chemical Research, Kyoto University (grant no. 2010-44). The iCeMS is supported by World Premier International Research Center Initiative, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

D. Sakano performed chemical screening, cellular and biochemical analyses; D. Sakano, N.S. and K.U. established the ES cell differentiation system; D. Sakano, K. Kikawa, M.K. and T.Y. performed transplantation assays; K.A. established the ES cell line; S.M., F.E. and N.N. helped maintain AKITA mice; D.M. and M.U. provided and analyzed the chemical library; O.A. and D. Stainier provided chemicals; K. Kume and S.K. provided technical advices, S.K. designed the experiments and wrote the paper. All of the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shoen Kume.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–13 and Supplementary Tables 1 and 2. (PDF 2648 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakano, D., Shiraki, N., Kikawa, K. et al. VMAT2 identified as a regulator of late-stage β-cell differentiation. Nat Chem Biol 10, 141–148 (2014). https://doi.org/10.1038/nchembio.1410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing