Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway

Abstract

Autophagy is linked to cell death, yet the associated mechanisms are largely undercharacterized. We discovered that melanoma, which is generally resistant to drug-induced apoptosis, can undergo autophagic cell death with the participation of orphan nuclear receptor TR3. A sequence of molecular events leading to cellular demise is launched by a specific chemical compound, 1-(3,4,5-trihydroxyphenyl)nonan-1-one, newly acquired from screening a library of TR3-targeting compounds. The autophagic cascade comprises TR3 translocation to mitochondria through interaction with the mitochondrial outer membrane protein Nix, crossing into the mitochondrial inner membrane through Tom40 and Tom70 channel proteins, dissipation of mitochondrial membrane potential by the permeability transition pore complex ANT1–VDAC1 and induction of autophagy. This process leads to excessive mitochondria clearance and irreversible cell death. It implicates a new approach to melanoma therapy through activation of a mitochondrial signaling pathway that integrates a nuclear receptor with autophagy for cell death.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: THPN mediates autophagic cell death in melanoma cells.
Figure 2: Nix-assisted TR3 translocation from the cytoplasm to the mitochondria is a prerequisite for the THPN-induced autophagy in A375 cells.
Figure 3: THPN binds the LBD at a specific conformation.
Figure 4: Dissipation of ΔΨm by THPN through the TR3–ANT1–VDAC1 pathway in A375 cells.
Figure 5: TR3 localization to MIM initiates THPN-induced autophagy in A375 cells.
Figure 6: Physiological function of TR3 and the antimelanoma activity of THPN in different mouse models.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Chudnovsky, Y., Khavari, P.A. & Adams, A.E. Melanoma genetics and the development of rational therapeutics. J. Clin. Invest. 115, 813–824 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gray-Schopfer, V., Wellbrock, C. & Marais, R. Melanoma biology and new targeted therapy. Nature 445, 851–857 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Flaherty, K.T., Hodi, F.S. & Fisher, D.E. From genes to drugs: targeted strategies for melanoma. Nat. Rev. Cancer 12, 349–361 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Soengas, M.S. & Lowe, S.W. Apoptosis and melanoma chemoresistance. Oncogene 22, 3138–3151 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Mizushima, N. & Komatsu, M. Autophagy: renovation of cells and tissues. Cell 147, 728–741 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Maiuri, M.C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741–752 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, L., Strandberg, L. & Lenardo, M.J. The selectivity of autophagy and its role in cell death and survival. Autophagy 4, 567–573 (2008).

    Article  PubMed  Google Scholar 

  8. Youle, R.J. & Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Zabirnyk, O., Liu, W., Khalil, S., Sharma, A. & Phang, J.M. Oxidized low-density lipoproteins upregulate proline oxidase to initiate ROS-dependent autophagy. Carcinogenesis 31, 446–454 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, J., Lian, H., Zhao, Y., Kauss, M.A. & Spindel, S. Vitamin D3 induces autophagy of human myeloid leukemia cells. J. Biol. Chem. 283, 25596–25605 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, R.H. et al. The orphan receptor TR3 participates in angiotensin II–induced cardiac hypertrophy by controlling mTOR signalling. EMBO Mol. Med. 5, 137–148 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Chen, H.Z. et al. The orphan receptor TR3 suppresses intestinal tumorigenesis in mice by downregulating Wnt signalling. Gut 61, 714–724 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, B.X. et al. Orphan receptor TR3 enhances p53 transactivation and represses DNA double-strand break repair in hepatoma cells under ionizing radiation. Mol. Endocrinol. 25, 1337–1350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, H.Z. et al. Prolyl isomerase Pin1 stabilizes and activates orphan nuclear receptor TR3 to promote mitogenesis. Oncogene 31, 2876–2887 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Zhan, Y. et al. Cytosporone B is an agonist for nuclear orphan receptor Nur77. Nat. Chem. Biol. 4, 548–556 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Liu, J.J. et al. A unique pharmacophore for activation of the nuclear orphan receptor Nur77 in vivo and in vitro. Cancer Res. 70, 3628–3637 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Zhan, Y.Y. et al. The orphan nuclear receptor Nur77 regulates LKB1 localization and activates AMPK. Nat. Chem. Biol. 8, 897–904 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Mizushima, N., Yoshimori, T. & Ohsumi, Y. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107–132 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Declercq, W., Vanden Berghe, T. & Vandenabeele, P. RIP kinases at the crossroads of cell death and survival. Cell 138, 229–232 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Green, D.R. Apoptotic pathways: ten minutes to dead. Cell 121, 671–674 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Modjtahedi, N., Giordanetto, F., Madeo, F. & Kroemer, G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol. 16, 264–272 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, H.Z. et al. Akt phosphorylates the TR3 orphan receptor and blocks its targeting to the mitochondria. Carcinogenesis 29, 2078–2088 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, B. et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 116, 527–540 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, J. & Ney, P.A. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 16, 939–946 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Narendra, D., Tanaka, A., Suen, D.F. & Youle, R.J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kroemer, G., Galluzzi, L. & Brenner, C. Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Jin, S.M. et al. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191, 933–942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baker, M.J., Frazier, A.E., Gulbis, J.M. & Ryan, M.T. Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol. 17, 456–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Zhan, Y.Y. & Wu, Q. Translocation of orphan receptor TR3 from nuclei to mitochondria induced by staurosporine. Ai Zheng 23, 1593–1598 (2004).

    CAS  PubMed  Google Scholar 

  32. Rosenfeldt, M.T. & Ryan, K.M. The multiple roles of autophagy in cancer. Carcinogenesis 32, 955–963 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tormo, D. et al. Targeted activation of innate immunity for therapeutic induction of autophagy and apoptosis in melanoma cells. Cancer Cell 16, 103–114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ackermann, J. et al. Metastasizing melanoma formation caused by expression of activated N-RasQ61K on an INK4a-deficient background. Cancer Res. 65, 4005–4011 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Yu, H., Kumar, S.M., Fang, D., Acs, G. & Xu, X. Nuclear orphan receptor TR3/Nur77 mediates melanoma cell apoptosis. Cancer Biol. Ther. 6, 405–412 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baker, K.D. et al. The Drosophila orphan nuclear receptor DHR38 mediates an atypical ecdysteroid signaling pathway. Cell 113, 731–742 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Z. et al. Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423, 555–560 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Rambold, A.S. & Lippincott-Schwartz, J. Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10, 4032–4038 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vaseva, A.V. et al. p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149, 1536–1548 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Moll, U.M., Marchenko, N. & Zhang, X.K. p53 and Nur77/TR3—transcription factors that directly target mitochondria for cell death induction. Oncogene 25, 4725–4743 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Vogelzang, N.J. et al. Clinical cancer advances 2011: annual report on progress against cancer from the American society of clinical oncology. J. Clin. Oncol. 30, 88–109 (2012).

    Article  PubMed  Google Scholar 

  43. Sosman, J.A. et al. Survival in BRAF V600–mutant advanced melanoma treated with vemurafenib. N. Engl. J. Med. 366, 707–714 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Das Thakur, M. et al. Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance. Nature 494, 251–255 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Chung, H. et al. Ethambutol-induced toxicity is mediated by zinc and lysosomal membrane permeabilization in cultured retinal cells. Toxicol. Appl. Pharmacol. 235, 163–170 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Noonan, J. et al. Endocannabinoids prevent β-amyloid–mediated lysosomal destabilization in cultured neurons. J. Biol. Chem. 285, 38543–38554 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  50. Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank L. Yu from Tsinghua University; S.C. Lin from Xiamen University; and Q. Chen from the Institute of Zoology, Chinese Academy of Science, China for their critical suggestions. We would like to thank G.Q. Wang from the Zhongshan Hospital of Xiamen University for providing MeWo melanoma cells. This work was supported by grants from the National Natural Science Fund of China and the '973' Project of the Ministry of Science and Technology (31230019, 2014CB910602, 31370724, 31221065 and 30971525); the Open Research Fund of State Key Laboratory of Cellular Stress Biology, Xiamen University (SKLCSB2012KF002); and the 111 Project of Education of China (no. B06016). The crystallographic data collection at Beamline BL17U1 at Shanghai Synchrotron Radiation Facility is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Q.W.'s laboratory (W.-j.W., Y.W., H.-z.C., Y.-z.X., B.Z., X.-l.B., L.L., Y.L., B.-x.Z., Y.C., R.W. and Y.Z.) was responsible for the experiments on molecular cellular biology and mouse detections. Lin's laboratory (F.-w.L., Q.Z., A.-z.L. and X.-y.T.) was responsible for the structure determination and analysis. P.-q.H.'s laboratory (H.-k.Z. and J.Z.) provided the compounds. L.-m.Y. and P.C. provided the electron microscopic technique and images. F.B. provided the mouse model of autochthonous melanoma in the skin. M.W. provided melanoma cell lines Mel-11, ME4405, Mel-RM, MM200 and IgR3. J.H. and M.W. were involved in the design of this project as well as in reading and commenting on the manuscript. Q.W. and T.L. designed the experiments and wrote the manuscript.

Corresponding authors

Correspondence to Tianwei Lin or Qiao Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–7, Supplementary Tables 1 and 2 and Supplementary Note. (PDF 3055 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Wj., Wang, Y., Chen, Hz. et al. Orphan nuclear receptor TR3 acts in autophagic cell death via mitochondrial signaling pathway. Nat Chem Biol 10, 133–140 (2014). https://doi.org/10.1038/nchembio.1406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1406

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer