Abstract
Pyridomycin, a natural product with potent antituberculosis activity, inhibits a major drug target, the InhA enoyl reductase. Here, we unveil the co-crystal structure and unique ability of pyridomycin to block both the NADH cofactor– and lipid substrate–binding pockets of InhA. This is to our knowledge a first-of-a-kind binding mode that discloses a new means of InhA inhibition. Proof-of-principle studies show how structure-assisted drug design can improve the activity of new pyridomycin derivatives.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development
Molecular Biomedicine Open Access 22 December 2022
-
Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability
Scientific Reports Open Access 05 July 2017
-
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
Journal of Computer-Aided Molecular Design Open Access 13 March 2017
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Glaziou, P., Floyd, K. & Raviglione, M. Clin. Chest Med. 30, 621–636 (2009).
Cegielski, J.P. Clin. Infect. Dis. 50, S195–S200 (2010).
Sullivan, T.J. et al. ACS Chem. Biol. 1, 43–53 (2006).
He, X., Alian, A., Stroud, R. & Ortiz de Montellano, P.R. J. Med. Chem. 49, 6308–6323 (2006).
Ballell Pages, L. et al. (Pyrazol-3-yl)-1,3,4-thiadiazole-2-amine and (pyrazol-3-yl)-1,3,4-thiazole-2-amine compounds. World Intellectual Property Organization WO2010118852 A1 (2010).
Shirude, P.S. et al. J. Med. Chem. 10.1021/jm401382v (11 November 2013).
Hartkoorn, R.C. et al. EMBO Mol. Med. 4, 1032–1042 (2012).
Koyama, G., Iitaka, Y., Maeda, K. & Umezawa, H. Tetrahedr. Lett. 37, 3587–3590 (1967).
Rozwarski, D.A., Vilcheze, C., Sugantino, M., Bittman, R. & Sacchettini, J.C. J. Biol. Chem. 274, 15582–15589 (1999).
Horlacher, O.P., Hartkoorn, R.C., Cole, S.T. & Altmann, K.-H. ACS Med. Chem. Lett. 4, 264–268 (2013).
McMurry, L.M., Oethinger, M. & Levy, S.B. Nature 394, 531–532 (1998).
Heath, R.J., Yu, Y.T., Shapiro, M.A., Olson, E. & Rock, C.O. J. Biol. Chem. 273, 30316–30320 (1998).
Freundlich, J.S. et al. ChemMedChem 4, 241–248 (2009).
He, X., Alian, A. & Ortiz de Montellano, P.R. Bioorg. Med. Chem. 15, 6649–6658 (2007).
Pan, P. & Tonge, P.J. Curr. Top. Med. Chem. 12, 672–693 (2012).
Jörnvall, H. et al. Biochemistry 34, 6003–6013 (1995).
Persson, B. & Kallberg, Y. Chem. Biol. Interact. 202, 111–115 (2013).
Dutta, D., Bhattacharyya, S., Roychowdhury, A., Biswas, R. & Das, A.K. Biochem. J. 450, 127–139 (2013).
Ward, R.A. et al. J. Med. Chem. 55, 3285–3306 (2012).
Cameron, A. et al. J. Biol. Chem. 279, 31429–31439 (2004).
Maeda, K., Kosaka, H., Okami, Y. & Umezawa, H. J. Antibiot. (Tokyo) 6, 140 (1953).
Kuo, M.R. et al. J. Biol. Chem. 278, 20851–20859 (2003).
Luckner, S.R., Liu, N., am Ende, C.W., Tonge, P.J. & Kisker, C. J. Biol. Chem. 285, 14330–14337 (2010).
Dias, M.V. et al. J. Struct. Biol. 159, 369–380 (2007).
Winn, M.D. et al. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
Smart, O.S. et al. Grade version 1.1.1 (Cambridge, United Kingdom, Global Phasing Ltd.) (2011).
Bruno, I.J. et al. J. Chem. Inf. Comput. Sci. 44, 2133–2144 (2004).
Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
Bricogne, G.B.E. et al. BUSTER version 2.11.2 (Cambridge, United Kingdom: Global Phasing Ltd.) (2011).
Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
McCoy, A.J. et al. J. Appl. Crystallogr. 40, 658–674 (2007).
Schüttelkopf, A.W. & van Aalten, D.M. Acta Crystallogr. D Biol. Crystallogr. 60, 1355–1363 (2004).
Laskowski, R.A., Rullmannn, J.A., MacArthur, M.W., Kaptein, R. & Thornton, J.M. J. Biomol. NMR 8, 477–486 (1996).
Acknowledgements
The authors would like to thank S. Surade (University of Cambridge) for providing the InhA expression plasmid (pIH51), S. Boy-Röttger and G. Cuanoud (both from EPFL) for technical assistance and G. Shiek (AstraZeneca) for protein supply. The research leading to these results received funding from the European Community's Seventh Framework Programme (grant 260872). J. Neres is the recipient of a Marie Curie fellowship from the European Commission.
Author information
Authors and Affiliations
Contributions
R.C.H., F.P., J.A.R., H.G., J.N. and O.P.H. designed the experiments. R.C.H., F.P., J.A.R., H.G. and J.N. performed the experiments. R.C.H., F.P., J.A.R. and J.N. analyzed data. K.-H.A. and O.P.H. contributed reagents. R.C.H., F.P., J.A.R., J.N. and S.T.C. wrote the paper.
Corresponding author
Ethics declarations
Competing interests
R.C.H., O.P.H., K.-H.A. and S.T.C. are named inventors on patents relating to this work.
Supplementary information
Supplementary Text and Figures
Supplementary Results, Supplementary Table 1 and Supplementary Figures 1–3. (PDF 1091 kb)
Rights and permissions
About this article
Cite this article
Hartkoorn, R., Pojer, F., Read, J. et al. Pyridomycin bridges the NADH- and substrate-binding pockets of the enoyl reductase InhA. Nat Chem Biol 10, 96–98 (2014). https://doi.org/10.1038/nchembio.1405
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nchembio.1405
This article is cited by
-
The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development
Molecular Biomedicine (2022)
-
Evaluation of heteroatom-rich derivatives as antitubercular agents with InhA inhibition properties
Medicinal Chemistry Research (2018)
-
Disruption of key NADH-binding pocket residues of the Mycobacterium tuberculosis InhA affects DD-CoA binding ability
Scientific Reports (2017)
-
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
Journal of Computer-Aided Molecular Design (2017)
-
Next-generation antimicrobials: from chemical biology to first-in-class drugs
Archives of Pharmacal Research (2015)