Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness

Abstract

Phospholipase D (PLD) is an essential enzyme responsible for the production of the lipid second messenger phosphatidic acid. Phosphatidic acid participates in both G protein–coupled receptor and receptor tyrosine kinase signal transduction networks. The lack of potent and isoform-selective inhibitors has limited progress in defining the cellular roles of PLD. We used a diversity-oriented synthetic approach and developed a library of PLD inhibitors with considerable pharmacological characterization. Here we report the rigorous evaluation of that library, which contains highly potent inhibitors, including the first isoform-selective PLD inhibitors. Specific members of this series inhibit isoforms with >100-fold selectivity both in vitro and in cells. A subset of inhibitors was shown to block invasiveness in metastatic breast cancer models. These findings demonstrate the power of diversity-oriented synthesis combined with biochemical assays and mass spectrometric lipid profiling of cellular responses to develop the first isoform-selective PLD inhibitors—a new class of antimetastatic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PLD and phosphatidic acid in the cell.
Figure 2: Design and synthetic strategy for PLD inhibitor development.
Figure 3: In vitro inhibition of recombinant PLD with select compounds.
Figure 4: Direct small-molecule inhibition of PLD.
Figure 5: Development of distinct PLD isoform cell systems.
Figure 6: Small molecules potently inhibit cellular PLD activity.
Figure 7: Inhibition of PLD leads to decreased invasive migration in breast cancer cell lines.

Similar content being viewed by others

References

  1. Ponting, C.P. & Kerr, I.D. A novel family of phospholipase D homologues that includes phospholipid synthases and putative endonucleases: identification of duplicated repeats and potential active site residues. Protein Sci. 5, 914–922 (1996).

    Article  CAS  Google Scholar 

  2. Xie, Z., Ho, W.T. & Exton, J.H. Association of N- and C-terminal domains of phospholipase D is required for catalytic activity. J. Biol. Chem. 273, 34679–34682 (1998).

    Article  CAS  Google Scholar 

  3. Brown, H.A. et al. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell 75, 1137–1144 (1993).

    Article  CAS  Google Scholar 

  4. Hammond, S.M. et al. Human ADP-ribosylation factor-activated phosphatidylcholine-specific phospholipase D defines a new and highly conserved gene family. J. Biol. Chem. 270, 29640–29643 (1995).

    Article  CAS  Google Scholar 

  5. Park, S.K. et al. Cloning and characterization of phospholipase D from rat brain. J. Biol. Chem. 272, 29263–29271 (1997).

    Article  CAS  Google Scholar 

  6. Exton, J.H. Regulation of phospholipase D. FEBS Lett. 531, 58–61 (2002).

    Article  CAS  Google Scholar 

  7. Hancock, J.F. PA promoted to manager. Nat. Cell Biol. 9, 615–617 (2007).

    Article  CAS  Google Scholar 

  8. Wymann, M.P. & Schneiter, R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol. 9, 162–176 (2008).

    Article  CAS  Google Scholar 

  9. Noh, D.Y. et al. Overexpression of phospholipase D1 in human breast cancer tissues. Cancer Lett. 161, 207–214 (2000).

    Article  CAS  Google Scholar 

  10. Uchida, N., Okamura, S., Nagamachi, Y. & Yamashita, S. Increased phospholipase D activity in human breast cancer. J. Cancer Res. Clin. Oncol. 123, 280–285 (1997).

    Article  CAS  Google Scholar 

  11. Zhao, Y. et al. Increased activity and intranuclear expression of phospholipase D2 in human renal cancer. Biochem. Biophys. Res. Commun. 278, 140–143 (2000).

    Article  CAS  Google Scholar 

  12. Uchida, N., Okamura, S. & Kuwano, H. Phospholipase D activity in human gastric carcinoma. Anticancer Res. 19, 671–675 (1999).

    CAS  PubMed  Google Scholar 

  13. Yamada, Y. et al. Association of a polymorphism of the phospholipase D2 gene with the prevalence of colorectal cancer. J. Mol. Med. 81, 126–131 (2003).

    Article  CAS  Google Scholar 

  14. Min, D.S. et al. Neoplastic transformation and tumorigenesis associated with overexpression of phospholipase D isozymes in cultured murine fibroblasts. Carcinogenesis 22, 1641–1647 (2001).

    Article  CAS  Google Scholar 

  15. Buchanan, F.G. et al. Requirement of phospholipase D1 activity in H-RasV12-induced transformation. Proc. Natl. Acad. Sci. USA 102, 1638–1642 (2005).

    Article  CAS  Google Scholar 

  16. Bocckino, S.B., Wilson, P.B. & Exton, J.H. Ca2+-mobilizing hormones elicit phosphatidylethanol accumulation via phospholipase D activation. FEBS Lett. 225, 201–204 (1987).

    Article  CAS  Google Scholar 

  17. Ktistakis, N.T. et al. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J. Cell Biol. 134, 295–306 (1996).

    Article  CAS  Google Scholar 

  18. Tou, J.S. & Urbizo, C. Diethylstilbestrol inhibits phospholipase D activity and degranulation by stimulated human neutrophils. Steroids 73, 216–221 (2008).

    Article  CAS  Google Scholar 

  19. Tou, J. & Urbizo, C. Resveratrol inhibits the formation of phosphatidic acid and diglyceride in chemotactic peptide- or phorbol ester-stimulated human neutrophils. Cell. Signal. 13, 191–197 (2001).

    Article  CAS  Google Scholar 

  20. Garcia, A. et al. Honokiol suppresses survival signals mediated by Ras-dependent phopholipase D activity in human cancer cells. Clin. Cancer Res. 14, 4267–4274 (2008).

    Article  CAS  Google Scholar 

  21. Puar, M.S., Barrabee, E., Hallade, M. & Patel, M. Sch 420789: a novel fungal metabolite with phospholipase D inhibitory activity. J. Antibiot. (Tokyo) 53, 837–838 (2000).

    Article  CAS  Google Scholar 

  22. McDonald, L.A. et al. 07H239-A, a new cytotoxic eremophilane sesquiterpene from the marine-derived Xylariaceous fungus LL-07H239. J. Nat. Prod. 67, 1565–1567 (2004).

    Article  CAS  Google Scholar 

  23. Levy, B.D. et al. Novel polyisoprenyl phosphates block phospholipase D and human neutrophil activation in vitro and murine peritoneal inflammation in vivo. Br. J. Pharmacol. 146, 344–351 (2005).

    Article  CAS  Google Scholar 

  24. Eisen, S.F. & Brown, H.A. Selective estrogen receptor (ER) modulators differentially regulate phospholipase D catalytic activity in ER-negative breast cancer cells. Mol. Pharmacol. 62, 911–920 (2002).

    Article  CAS  Google Scholar 

  25. Monovich, L. et al. Optimization of halopemide for phospholipase D2 inhibition. Bioorg. Med. Chem. Lett. 17, 2310–2311 (2007).

    Article  CAS  Google Scholar 

  26. Brown, H.A. et al. Biochemical analysis of phospholipase D. Methods Enzymol. 434, 49–87 (2007).

    Article  CAS  Google Scholar 

  27. Henage, L.G., Exton, J.H. & Brown, H.A. Kinetic analysis of a mammalian phospholipase D: allosteric modulation by monomeric GTPases, protein kinase C, and polyphosphoinositides. J. Biol. Chem. 281, 3408–3417 (2006).

    Article  CAS  Google Scholar 

  28. Yang, H. & Roberts, M.F. Phosphohydrolase and transphosphatidylation reactions of two Streptomyces phospholipase D enzymes: covalent versus noncovalent catalysis. Protein Sci. 12, 2087–2098 (2003).

    Article  CAS  Google Scholar 

  29. Billah, M.M. et al. Regulation of phospholipase D in HL-60 granulocytes. Activation by phorbol esters, diglyceride, and calcium ionophore via protein kinase-independent mechanisms. J. Biol. Chem. 264, 9069–9076 (1989).

    CAS  PubMed  Google Scholar 

  30. Colley, W.C. et al. Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7, 191–201 (1997).

    Article  CAS  Google Scholar 

  31. Aguirre Ghiso, J.A. et al. A phospholipase D and protein kinase C inhibitor blocks the spreading of murine mammary adenocarcinoma cells altering f-actin and β1-integrin point contact distribution. Int. J. Cancer 71, 881–890 (1997).

    Article  CAS  Google Scholar 

  32. Shen, Y., Zheng, Y. & Foster, D.A. Phospholipase D2 stimulates cell protrusion in v-Src-transformed cells. Biochem. Biophys. Res. Commun. 293, 201–206 (2002).

    Article  CAS  Google Scholar 

  33. Imamura, F. et al. Induction of in vitro tumor cell invasion of cellular monolayers by lysophosphatidic acid or phospholipase D. Biochem. Biophys. Res. Commun. 193, 497–503 (1993).

    Article  CAS  Google Scholar 

  34. Pai, J.K., Frank, E.A., Blood, C. & Chu, M. Novel ketoepoxides block phospholipase D activation and tumor cell invasion. Anticancer Drug Des. 9, 363–372 (1994).

    CAS  PubMed  Google Scholar 

  35. Guy, C.T., Cardiff, R.D. & Muller, W.J. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol. Cell. Biol. 12, 954–961 (1992).

    Article  CAS  Google Scholar 

  36. Bi, K., Roth, M.G. & Ktistakis, N.T. Phosphatidic acid formation by phospholipase D is required for transport from the endoplasmic reticulum to the Golgi complex. Curr. Biol. 7, 301–307 (1997).

    Article  CAS  Google Scholar 

  37. Rizzo, M.A. et al. Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J. Biol. Chem. 274, 1131–1139 (1999).

    Article  CAS  Google Scholar 

  38. Zhao, C. et al. Phospholipase D2-generated phosphatidic acid couples EGFR stimulation to Ras activation by Sos. Nat. Cell Biol. 9, 706–712 (2007).

    CAS  PubMed  Google Scholar 

  39. Fang, Y. et al. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294, 1942–1945 (2001).

    Article  CAS  Google Scholar 

  40. Chen, Y., Zheng, Y. & Foster, D.A. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 22, 3937–3942 (2003).

    Article  CAS  Google Scholar 

  41. Williger, B.T., Ho, W.T. & Exton, J.H. Phospholipase D mediates matrix metalloproteinase-9 secretion in phorbol ester-stimulated human fibrosarcoma cells. J. Biol. Chem. 274, 735–738 (1999).

    Article  CAS  Google Scholar 

  42. Kato, Y. et al. Acidic extracellular pH induces matrix metalloproteinase-9 expression in mouse metastatic melanoma cells through the phospholipase D-mitogen-activated protein kinase signaling. J. Biol. Chem. 280, 10938–10944 (2005).

    Article  CAS  Google Scholar 

  43. Kang, D.W. et al. Phorbol ester up-regulates phospholipase D1 but not phospholipase D2 expression through a PKC/Ras/ERK/NFkappaB-dependent pathway and enhances matrix metalloproteinase-9 secretion in colon cancer cells. J. Biol. Chem. 283, 4094–4104 (2008).

    Article  CAS  Google Scholar 

  44. Reich, R., Blumenthal, M. & Liscovitch, M. Role of phospholipase D in laminin-induced production of gelatinase A (MMP-2) in metastatic cells. Clin. Exp. Metastasis 13, 134–140 (1995).

    Article  CAS  Google Scholar 

  45. Williger, B.T. et al. Release of gelatinase A (matrix metalloproteinase 2) induced by photolysis of caged phosphatidic acid in HT 1080 metastatic fibrosarcoma cells. J. Biol. Chem. 270, 29656–29659 (1995).

    Article  CAS  Google Scholar 

  46. Wang, L. et al. Involvement of phospholipases D1 and D2 in sphingosine 1-phosphate-induced ERK (extracellular-signal-regulated kinase) activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem. J. 367, 751–760 (2002).

    Article  CAS  Google Scholar 

  47. Walker, S.J., Wu, W.J., Cerione, R.A. & Brown, H.A. Activation of phospholipase D1 by Cdc42 requires the Rho insert region. J. Biol. Chem. 275, 15665–15668 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge outstanding support from A. Goodman (mass spectrometry) and D. Myers (data analysis and statistics) as well as R. Bruntz (Vanderbilt University) for assisting with the generation of the HEK293-gfpPLD2 stable cell line. We thank C. Rouzer for helpful discussions. We gratefully acknowledge partial support for this project from the A.B. Hancock Jr. Memorial Laboratory for Cancer Research and the Vanderbilt Institute for Chemical Biology (to H.A.B. and C.W.L.). P.E.S. was supported in part by a US National Research Service Award Training Fellowship (T32 GM007628). T.L.C. was partially supported by the US National Cancer Institute T32 grant CA09592 and the Breast Cancer Specialized Program of Research Excellence (P50-CA98131 to C.L.A.).

Author information

Authors and Affiliations

Authors

Contributions

S.A.S. carried out the cell-based inhibitor screening. P.E.S. and M.D.A. carried out in vitro inhibitor assays and protein purification. J.R.B. and A.L.T. performed chemical synthesis and characterization. H.P.C. was responsible for siRNA, RT-PCR and western blots. T.L.C. performed transwell experiments. C.L.A., C.W.L. and H.A.B. were responsible for coordination, planning and data interpretation of different aspects of the project.

Corresponding author

Correspondence to H Alex Brown.

Supplementary information

Supplementary Text and Figures

Supplementary Schemes 1–3 and Supplementary Methods (PDF 465 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, S., Selvy, P., Buck, J. et al. Design of isoform-selective phospholipase D inhibitors that modulate cancer cell invasiveness. Nat Chem Biol 5, 108–117 (2009). https://doi.org/10.1038/nchembio.140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing