Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli

Abstract

The widely conserved multiple antibiotic resistance regulator (MarR) family of transcription factors modulates bacterial detoxification in response to diverse antibiotics, toxic chemicals or both. The natural inducer for Escherichia coli MarR, the prototypical transcription repressor within this family, remains unknown. Here we show that copper signaling potentiates MarR derepression in E. coli. Copper(II) oxidizes a cysteine residue (Cys80) on MarR to generate disulfide bonds between two MarR dimers, thereby inducing tetramer formation and the dissociation of MarR from its cognate promoter DNA. We further discovered that salicylate, a putative MarR inducer, and the clinically important bactericidal antibiotics norfloxacin and ampicillin all stimulate intracellular copper elevation, most likely through oxidative impairment of copper-dependent envelope proteins, including NADH dehydrogenase-2. This membrane-associated copper oxidation and liberation process derepresses MarR, causing increased bacterial antibiotic resistance. Our study reveals that this bacterial transcription regulator senses copper(II) as a natural signal to cope with stress caused by antibiotics or the environment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Copper(II) is a natural signal for MarR derepression.
Figure 2: The response mechanism of MarR to copper(II).
Figure 3: Crystal structure of copper(II)-oxidized MarR5CS(80C).
Figure 4: SAL- and antibiotic-triggered intracellular copper elevation.
Figure 5: Antibiotic-stimulated OHP production leads to copper liberation and MarR derepression.
Figure 6: A new linkage of antibiotic-triggered envelope stress and copper signaling with MarR-mediated bacterial antibiotic resistance.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Martin, R.G., Nyantakyi, P.S. & Rosner, J.L. Regulation of the multiple antibiotic resistance (mar) regulon by marORA sequences in Escherichia coli. J. Bacteriol. 177, 4176–4178 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alekshun, M.N. & Levy, S.B. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41, 2067–2075 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Perera, I.C. & Grove, A. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J. Mol. Cell Biol. 2, 243–254 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Cohen, S.P., Levy, S.B., Foulds, J. & Rosner, J.L. Salicylate induction of antibiotic-resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J. Bacteriol. 175, 7856–7862 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alekshun, M.N. & Levy, S.B. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7, 410–413 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Martin, R.G. & Rosner, J.L. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA 92, 5456–5460 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Alekshun, M.N. & Levy, S.B. Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J. Bacteriol. 181, 4669–4672 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Price, C.T.D., Lee, I.R. & Gustafson, J.E. The effects of salicylate on bacteria. Int. J. Biochem. Cell Biol. 32, 1029–1043 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Nathan, C. & Cunningham-Bussel, A. Beyond oxidative stress: an immunologist's guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349–361 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A. & Collins, J.J. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Dwyer, D.J., Kohanski, M.A. & Collins, J.J. Role of reactive oxygen species in antibiotic action and resistance. Curr. Opin. Microbiol. 12, 482–489 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu, Y. & Imlay, J.A. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339, 1210–1213 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R. & Lewis, K. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. D'Autréaux, B. & Toledano, M.B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    Article  PubMed  Google Scholar 

  15. Pomposiello, P.J. & Demple, B. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 19, 109–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, P.R. et al. An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus. Nat. Chem. Biol. 2, 591–595 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Lee, J.-W. & Helmann, J.D. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440, 363–367 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Kohanski, M.A., DePristo, M.A. & Collins, J.J. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol. Cell 37, 311–320 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin, R.G., Jair, K.W., Wolf, R.E. & Rosner, J.L. Autoactivation of the marRAB multiple antibiotic resistance operon by the MarA transcriptional activator in Escherichia coli. J. Bacteriol. 178, 2216–2223 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uversky, V.N., Winter, S. & Löber, G. Self-association of 8-anilino-1-naphthalene-sulfonate molecules: spectroscopic characterization and application to the investigation of protein folding. Biochim. Biophys. Acta 1388, 133–142 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Xiao, Z., Loughlin, F., George, G.N., Howlett, G.J. & Wedd, A.G. C-terminal domain of the membrane copper transporter Ctr1 from Saccharomyces cerevisiae binds four Cu(I) ions as a cuprous-thiolate polynuclear cluster: sub-femtomolar Cu(I) affinity of three proteins involved in copper trafficking. J. Am. Chem. Soc. 126, 3081–3090 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Riddles, P.W., Blakeley, R.L. & Zerner, B. Reassessment of Ellman's reagent. Methods Enzymol. 91, 49–60 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Ding, X., Xie, H. & Kang, Y.J. The significance of copper chelators in clinical and experimental application. J. Nutr. Biochem. 22, 301–310 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Alekshun, M.N., Levy, S.B., Mealy, T.R., Seaton, B.A. & Head, J.F. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat. Struct. Biol. 8, 710–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Hong, M., Fuangthong, M., Helmann, J.D. & Brennan, R.G. Structure of an OhrR–ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol. Cell 20, 131–141 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Kumarevel, T., Tanaka, T., Umehara, T. & Yokoyama, S.S.T. 1710–DNA complex crystal structure reveals the DNA binding mechanism of the MarR family of regulators. Nucleic Acids Res. 37, 4723–4735 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dolan, K.T., Duguid, E.M. & He, C. Crystal structures of SlyA protein, a master virulence regulator of Salmonella, in free and DNA-bound states. J. Biol. Chem. 286, 22178–22185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dwyer, D.J., Kohanski, M.A., Hayete, B. & Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zeng, L., Miller, E.W., Pralle, A., Isacoff, E.Y. & Chang, C.J. A selective turn-on fluorescent sensor for imaging copper in living cells. J. Am. Chem. Soc. 128, 10–11 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kohanski, M.A., Dwyer, D.J., Wierzbowski, J., Cottarel, G. & Collins, J.J. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell 135, 679–690 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kershaw, C.J., Brown, N.L., Constantinidou, C., Patel, M.D. & Hobman, J.L. The expression profile of Escherichia coli K-12 in response to minimal, optimal and excess copper concentrations. Microbiology 151, 1187–1198 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Montelongo, L., de la Cruz-Rodriguez, L.C., Farías, R.N. & Massa, E.M. Membrane-associated redox cycling of copper mediates hydroperoxide toxicity in. Escherichia coli. Biochim. Biophys. Acta 1144, 77–84 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. Rodríguez-Montelongo, L.,, R.N. & Massa, E.M. Sites of electron transfer to membrane-bound copper and hydroperoxide-induced damage in the respiratory chain of Escherichia coli. Arch. Biochem. Biophys. 323, 19–26 (1995).

  34. Walling, C. Fenton's reagent revisited. Acc. Chem. Res. 8, 125–131 (1975).

    Article  CAS  Google Scholar 

  35. Patikarnmonthon, N. et al. Copper ions potentiate organic hydroperoxide and hydrogen peroxide toxicity through different mechanisms in Xanthomonas campestris pv. campestris. FEMS Microbiol. Lett. 313, 75–80 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Rapisarda, V.A. et al. Evidence for Cu(I)-thiolate ligation and prediction of a putative copper-binding site in the Escherichia coli NADH dehydrogenase-2. Arch. Biochem. Biophys. 405, 87–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Rodríguez-Montelongo, L., Volentini, S.I., Farías, R.N., Massa, E.M. & Rapisarda, V.A. The Cu(II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch. Biochem. Biophys. 451, 1–7 (2006).

    Article  PubMed  Google Scholar 

  38. Zhao, B.S. et al. A highly selective fluorescent probe for visualization of organic hydroperoxides in living cells. J. Am. Chem. Soc. 132, 17065–17067 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Domain, F., Bina, X.R. & Levy, S.B. Transketolase A, an enzyme in central metabolism, derepresses the marRAB multiple antibiotic resistance operon of Escherichia coli by interaction with MarR. Mol. Microbiol. 66, 383–394 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Frawley, E.R. et al. Iron and citrate export by a major facilitator superfamily pump regulates metabolism and stress resistance in Salmonella Typhimurium. Proc. Natl. Acad. Sci. USA 110, 12054–12059 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, F. et al. Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc. Natl. Acad. Sci. USA 109, 9095–9100 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Deng, X. et al. Proteome-wide quantification and characterization of oxidation-sensitive cysteines in pathogenic bacteria. Cell Host Microbe 13, 358–370 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Winter, J., Ilbert, M., Graf, P.C.F., Özcelik, D. & Jakob, U. Bleach activates a redox-regulated chaperone by oxidative protein unfolding. Cell 135, 691–701 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hiniker, A., Collet, J.-F. & Bardwell, J.C.A. Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem. 280, 33785–33791 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Meloni, G. et al. Metal swap between Zn7-metallothionein-3 and amyloid-β-Cu protects against amyloid-β toxicity. Nat. Chem. Biol. 4, 366–372 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Battye, T.G.G., Kontogiannis, L., Johnson, O., Powell, H.R. & Leslie, A.G.W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67, 271–281 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  51. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    CAS  Google Scholar 

  52. Kleywegt, G.J. Use of non-crystallographic symmetry in protein structure refinement. Acta Crystallogr. D Biol. Crystallogr. 52, 842–857 (1996).

    Article  CAS  PubMed  Google Scholar 

  53. Painter, J. & Merritt, E.A. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62, 439–450 (2006).

    Article  PubMed  Google Scholar 

  54. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Livak, K.J. & Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Rosner (National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health) for providing the strains of M2073 (WT E. coli) and M2076 (marRAB mutant strains) bearing the marR::lacZ reporter, J.J. Collins (Department of Biomedical Engineering, Boston University) for providing the pL(lexO)-GFP reporter, C.J. Chang (College of Chemistry, University of California–Berkeley) for providing the Cu(I)-specific fluorescent probe CS-1 and S.F. Reichard for editing. The E. coli WT (K12) strain (BW25113) and all of the single-gene deletion mutants were obtained from the National BioResource Project (National Institute of Genetics, Japan). We also thank the staff members of the Shanghai Synchrotron Radiation Facility and the Beijing Synchrotron Radiation Facility. This work was supported by research grants from the National Basic Research Foundation of China (2010CB912302 and 2012CB917301 to P.R.C.; 2011CB809103 to C.H.), the National Natural Science Foundation of China (21225206, 91013005 and 21001010 to P.R.C.), the US National Science Foundation (CHE-1213598 to C.H.) and the E-Institutes of Shanghai Municipal Education Commission (project number E09013 to C.H. and P.R.C.).

Author information

Authors and Affiliations

Authors

Contributions

Z.H. performed the biochemical studies and participated in the structure studies. H.L. determined the crystal structures of copper(II)-oxidized MarR5CS(80C) and reduced MarRC80S. R.Z., J.Z. and X.C. helped with the biochemical and/or structure experiments. D.Z., B.S.Z. and S.Z. performed the experiments for OHP detection using OHSer. J.C. synthesized the Cu(I)-specific fluorescent probe CS-1. P.R.C. and C.H. conceived the study, designed experiments, interpreted data and wrote the manuscript with input from all of the authors.

Corresponding authors

Correspondence to Chuan He or Peng R Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Tables 1–6 and Supplementary Figures 1–24. (PDF 4517 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hao, Z., Lou, H., Zhu, R. et al. The multiple antibiotic resistance regulator MarR is a copper sensor in Escherichia coli. Nat Chem Biol 10, 21–28 (2014). https://doi.org/10.1038/nchembio.1380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1380

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology