Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate

A Corrigendum to this article was published on 17 January 2014

This article has been updated

Abstract

Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant with an inactive AnsP1 revealed that the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutant is impaired in vivo, revealing that aspartate is a primary nitrogen source required for host colonization by the tuberculosis bacillus.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AnsP1 is essential for M. tuberculosis growth on aspartate as sole nitrogen source.
Figure 2: AnsP1 is essential for M. tuberculosis nitrogen assimilation from aspartate.

Similar content being viewed by others

Change history

  • 11 December 2013

    In the version of this article initially published, the name of contributing author Jean-Luc Guerquin-Kern was misspelled as Jean-Luc Gerquin-Kern. The error has been corrected in the HTML and PDF versions of the article.

References

  1. McKinney, J.D. et al. Nature 406, 735–738 (2000).

    Article  CAS  Google Scholar 

  2. de Carvalho, L.P. et al. Chem. Biol. 17, 1122–1131 (2010).

    Article  CAS  Google Scholar 

  3. Marrero, J., Trujillo, C., Rhee, K.Y. & Ehrt, S. PLoS Pathog. 9, e1003116 (2013).

    Article  CAS  Google Scholar 

  4. Pandey, A.K. & Sassetti, C.M. Proc. Natl. Acad. Sci. USA 105, 4376–4380 (2008).

    Article  CAS  Google Scholar 

  5. Rhee, K.Y. et al. Trends Microbiol. 19, 307–314 (2011).

    Article  CAS  Google Scholar 

  6. Cook, G.M. et al. Adv. Microb. Physiol. 55, 81, 318–319 (2009).

    Article  CAS  Google Scholar 

  7. Lyon, R.H., Hall, W.H. & Costas-Martinez, C. J. Bacteriol. 117, 151–156 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Song, H. et al. Mol. Microbiol. 80, 900–918 (2011).

    Article  CAS  Google Scholar 

  9. Song, H. & Niederweis, M. J. Bacteriol. 194, 956–964 (2012).

    Article  CAS  Google Scholar 

  10. Cole, S.T. et al. Nature 393, 537–544 (1998).

    Article  CAS  Google Scholar 

  11. Jennings, M.P., Anderson, J.K. & Beacham, I.R. Microbiology 141, 141–146 (1995).

    Article  CAS  Google Scholar 

  12. Youmans, A.S. & Youmans, G.P. J. Bacteriol. 65, 96–99 (1953).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Reitzer, L. Annu. Rev. Microbiol. 57, 155–176 (2003).

    Article  CAS  Google Scholar 

  14. Yuan, J., Fowler, W.U., Kimball, E., Lu, W. & Rabinowitz, J.D. Nat. Chem. Biol. 2, 529–530 (2006).

    Article  CAS  Google Scholar 

  15. Russell, D.G. Immunol. Rev. 240, 252–268 (2011).

    Article  CAS  Google Scholar 

  16. Guerquin-Kern, J.L., Wu, T.D., Quintana, C. & Croisy, A. Biochim. Biophys. Acta 1724, 228–238 (2005).

    Article  CAS  Google Scholar 

  17. Clemens, D.L. & Horwitz, M.A. J. Exp. Med. 181, 257–270 (1995).

    Article  CAS  Google Scholar 

  18. Xu, S. et al. J. Immunol. 153, 2568–2578 (1994).

    CAS  PubMed  Google Scholar 

  19. Somashekar, B.S. et al. J. Proteome Res. 10, 4186–4195 (2011).

    Article  CAS  Google Scholar 

  20. Amon, J., Titgemeyer, F. & Burkovski, A. J. Mol. Microbiol. Biotechnol. 17, 20–29 (2009).

    Article  CAS  Google Scholar 

  21. Jack, D.L., Paulsen, I.T. & Saier, M.H. Microbiology 146, 1797–1814 (2000).

    Article  CAS  Google Scholar 

  22. Saier, M.H. Jr. Microbiology 146, 1775–1795 (2000).

    Article  CAS  Google Scholar 

  23. Cole, S.T. et al. Nature 409, 1007–1011 (2001).

    Article  CAS  Google Scholar 

  24. van Kessel, J.C. & Hatfull, G.F. Nat. Methods 4, 147–152 (2007).

    Article  CAS  Google Scholar 

  25. Bange, F.C., Collins, F.M. & Jacobs, W.R. Jr. Tuber. Lung Dis. 79, 171–180 (1999).

    Article  CAS  Google Scholar 

  26. Pesek, J.J., Matyska, M.T., Fischer, S.M. & Sana, T.R. J. Chromatogr. A 1204, 48–55 (2008).

    Article  CAS  Google Scholar 

  27. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. Nat. Methods 9, 671–675 (2012).

    Article  CAS  Google Scholar 

  28. Lechene, C. et al. J. Biol. 5, 20 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Gutierrez and D. Hudrisier for carefully reading the manuscript and for their helpful suggestions. We thank L. Lepourry and F. Moreau for technical assistance with mouse infections. We thank A. Benard (IPBS, Toulouse, France) for providing mouse cells and R. Brosch (Institut Pasteur, Paris, France) for providing the I257 cosmid. We thank Y. Verkindère (YV Photographiste, Toulouse, France) for help with graphical work. We thank the PICT-IBiSA imaging facility in the Institut Curie. This work was supported by Agence Nationale de la Recherche (contracts SLC-TB and TB-HITS), the UK Medical Research Council (MC_UP_A253_1111) and the European Union Seventh Framework Programme NEWTBVAC (contract no. 241745). This work also benefited from the TRI RIO Optical Imaging Platform at the Institute of Pharmacology and Structural Biology (Genotoul, Toulouse, France) and was supported by grants from the Région Midi-Pyrénées (Contrat de Projets Etat-Région Midi-Pyrénées (CPER)), the Grand Toulouse community, the Agence pour la Recherche sur le Cancer (ARC equipement no. 8505), the Centre National de la Recherche Scientifique and the European Union–European Regional Development Fund program. A.G. and G.L.-V. hold a fellowship from the Fondation pour la Recherche Médicale. The funders had no role in the study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.G., J.-L.G.-K., L.P.S.d.C., Y.P. and O.N. designed the experiments. A.G., G.L.-M. and T.-D.W. performed the experiments, with technical assistance from A.P., F.L. and J.-L.G.-K. A.G., G.L.-M., T.-D.W., A.P., J.-L.G.-K., L.P.S.d.C., Y.P. and O.N. analyzed the results. A.G., G.L.-M., G.L.-V., L.P.S.d.C., Y.P. and O.N. wrote the manuscript.

Corresponding author

Correspondence to Olivier Neyrolles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–9 (PDF 5535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouzy, A., Larrouy-Maumus, G., Wu, TD. et al. Mycobacterium tuberculosis nitrogen assimilation and host colonization require aspartate. Nat Chem Biol 9, 674–676 (2013). https://doi.org/10.1038/nchembio.1355

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1355

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing