Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Global profiling of stimulus-induced polyadenylation in cells using a poly(A) trap

Abstract

Polyadenylation of mRNA leads to increased protein expression in response to diverse stimuli, but it is difficult to identify mRNAs that become polyadenylated in living cells. Here we describe a click chemistry–compatible nucleoside analog that is selectively incorporated into poly(A) tails of transcripts in cells. Next-generation sequencing of labeled mRNAs enables a transcriptome-wide profile of polyadenylation and provides insights into the mRNA sequence elements that are correlated with polyadenylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 2-Ethynyl adenosine synthesis and incorporation.
Figure 2: Using 2-ethynyl adenosine to isolate newly polyadenylated transcripts.
Figure 3: Enrichment analysis of regulatory motifs in 3′ UTRs of 2-ethynyl adenosine–trapped transcripts.

Similar content being viewed by others

References

  1. Weill, L., Belloc, E., Bava, F.A. & Mendez, R. Nat. Struct. Mol. Biol. 19, 577–585 (2012).

    Article  CAS  Google Scholar 

  2. Meijer, H.A. et al. Nucleic Acids Res. 35, e132 (2007).

    Article  Google Scholar 

  3. Novoa, I., Gallego, J., Ferreira, P.G. & Mendez, R. Nat. Cell Biol. 12, 447–456 (2010).

    Article  CAS  Google Scholar 

  4. Graindorge, A., Thuret, R., Pollet, N., Osborne, H.B. & Audic, Y. Nucleic Acids Res. 34, 986–995 (2006).

    Article  CAS  Google Scholar 

  5. Beilharz, T.H. & Preiss, T. Methods 48, 294–300 (2009).

    Article  CAS  Google Scholar 

  6. Meijer, H.A. & de Moor, C.H. Methods Mol. Biol. 703, 123–135 (2011).

    Article  CAS  Google Scholar 

  7. Martin, G., Keller, W. & Doublie, S. EMBO J. 19, 4193–4203 (2000).

    Article  CAS  Google Scholar 

  8. Chen, L.S. & Sheppard, T.L. J. Biol. Chem. 279, 40405–40411 (2004).

    Article  CAS  Google Scholar 

  9. Martin, G., Moglich, A., Keller, W. & Doublie, S. J. Mol. Biol. 341, 911–925 (2004).

    Article  CAS  Google Scholar 

  10. Horowitz, B., Goldfinger, B.A. & Marmur, J. Arch. Biochem. Biophys. 172, 143–148 (1976).

    Article  CAS  Google Scholar 

  11. Jao, C.Y. & Salic, A. Proc. Natl. Acad. Sci. USA 105, 15779–15784 (2008).

    Article  CAS  Google Scholar 

  12. Radford, H.E., Meijer, H.A. & de Moor, C.H. Biochim. Biophys. Acta 1779, 217–229 (2008).

    Article  CAS  Google Scholar 

  13. Schorderet-Slatkine, S. Cell Differ. 1, 179–189 (1972).

    Article  CAS  Google Scholar 

  14. de Moor, C.H., Meijer, H. & Lissenden, S. Semin. Cell Dev. Biol. 16, 49–58 (2005).

    Article  CAS  Google Scholar 

  15. de Moor, C.H. & Richter, J.D. Mol. Cell Biol. 17, 6419–6426 (1997).

    Article  CAS  Google Scholar 

  16. Sheets, M.D., Fox, C.A., Hunt, T., Vande Woude, G. & Wickens, M. Genes Dev. 8, 926–938 (1994).

    Article  CAS  Google Scholar 

  17. Charlesworth, A., Cox, L.L. & MacNicol, A.M. J. Biol. Chem. 279, 17650–17659 (2004).

    Article  CAS  Google Scholar 

  18. Paris, J. & Philippe, M. Dev. Biol. 140, 221–224 (1990).

    Article  CAS  Google Scholar 

  19. Culp, P.A. & Musci, T.J. Dev. Biol. 193, 63–76 (1998).

    Article  CAS  Google Scholar 

  20. Rassa, J.C., Wilson, G.M., Brewer, G.A. & Parks, G.D. Virology 274, 438–449 (2000).

    Article  CAS  Google Scholar 

  21. MacNicol, M.C. & MacNicol, A.M. Mol. Reprod. Dev. 77, 662–669 (2010).

    Article  CAS  Google Scholar 

  22. Cohen, M.S., Bas Orth, C., Kim, H.J., Jeon, N.L. & Jaffrey, S.R. Proc. Natl. Acad. Sci. USA 108, 11246–11251 (2011).

    Article  CAS  Google Scholar 

  23. Krek, W. & DeCaprio, J.A. Methods Enzymol. 254, 114–124 (1995).

    Article  CAS  Google Scholar 

  24. Groisman, I. et al. Cell 103, 435–447 (2000).

    Article  CAS  Google Scholar 

  25. Cohen, S., Au, S. & Pante, N. J. Vis. Exp. http://dx.doi.org/10.3791/1106 (23 February 2009).

  26. Jiang, H. & Wong, W.H. Bioinformatics 24, 2395–2396 (2008).

    Article  CAS  Google Scholar 

  27. Anders, S. & Huber, W. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  28. Huang da, W., Sherman, B.T. & Lempicki, R.A. Nat. Protoc. 4, 44–57 (2009).

    Article  Google Scholar 

  29. Huang da, W., Sherman, B.T. & Lempicki, R.A. Nucleic Acids Res. 37, 1–13 (2009).

    Article  Google Scholar 

  30. Markham, N.R. & Zuker, M. Methods Mol. Biol. 453, 3–31 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Jaffrey lab for helpful comments and suggestions. We thank J. Richter (University of Massachusetts Medical School) for the antibody to CPEB. We gratefully acknowledge C. Bracken and N. Svensen for assistance with NMR spectroscopy. This work was supported by US National Institutes of Health–National Institute on Drug Abuse grant T32DA007274 (D.C. and M.C.) and US National Institute of Neurological Disorders and Stroke grant R01NS56306 (S.R.J.).

Author information

Authors and Affiliations

Authors

Contributions

D.C. and S.R.J. designed experiments, analyzed the data and wrote the manuscript; D.C. performed the experiments; C.E.S. performed oocyte injection experiments; I.S. and C.S.L. performed bioinformatics analyses; M.C. designed and synthesized 2-ethynyl adenosine and EAMP and wrote portions of the manuscript.

Corresponding author

Correspondence to Samie R Jaffrey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–16, Supplementary Note and Supplementary Tables 1–18. (PDF 34944 kb)

Supplementary Data Set 1

List of EA-trapped and EA-depleted transcripts (XLSX 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curanovic, D., Cohen, M., Singh, I. et al. Global profiling of stimulus-induced polyadenylation in cells using a poly(A) trap. Nat Chem Biol 9, 671–673 (2013). https://doi.org/10.1038/nchembio.1334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1334

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing