Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein

Abstract

In Bacillus subtilis, PerR is a metal-dependent sensor of hydrogen peroxide. PerR is a dimeric zinc protein with a regulatory site that coordinates either Fe2+ (PerR-Zn-Fe) or Mn2+ (PerR-Zn-Mn). Though most of the peroxide sensors use cysteines to detect H2O2, it has been shown that reaction of PerR-Zn-Fe with H2O2 leads to the oxidation of one histidine residue. Oxidation of PerR leads to the incorporation of one oxygen atom into His37 or His91. This study presents the crystal structure of the oxidized PerR protein (PerR-Zn-ox), which clearly shows a 2-oxo-histidine residue in position 37. Formation of 2-oxo-histidine is demonstrated and quantified by HPLC-MS/MS. EPR experiments indicate that PerR-Zn-H37ox retains a significant affinity for the regulatory metal, whereas PerR-Zn-H91ox shows a considerably reduced affinity for the metal ion. In spite of these major differences in terms of metal binding affinity, oxidation of His37 and/or His91 in PerR prevents DNA binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of the oxidized PerR-Zn-ox protein.
Figure 2: HPLC-MS/MS analysis of the 2-oxo-histidine/histidine ratio for the completely hydrolyzed PerR-Zn-apo and PerR-Zn-ox proteins.
Figure 3: DNA binding affinity of PerR-Zn-apo, PerR-Zn-ox, PerR-Zn-H37A and PerR-Zn-H91A in the presence of Mn2+.
Figure 4: Room temperature EPR analysis of Mn2+ binding by PerR-Zn-ox.
Figure 5: Structural model of PerR regulatory site and oxidation-dependent conformation of PerR.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Storz, G. & Imlay, J.A. Oxidative stress. Curr. Opin. Microbiol. 2, 188–194 (1999).

    Article  CAS  Google Scholar 

  2. Toledano, M.B., Delaunay, A., Monceau, L. & Tacnet, F. Microbial H2O2 sensors as archetypical redox signaling modules. Trends Biochem. Sci. 29, 351–357 (2004).

    Article  CAS  Google Scholar 

  3. Mongkolsuk, S. & Helmann, J.D. Regulation of inducible peroxide stress responses. Mol. Microbiol. 45, 9–15 (2002).

    Article  CAS  Google Scholar 

  4. Paget, M.S. & Buttner, M.J. Thiol-based regulatory switches. Annu. Rev. Genet. 37, 91–121 (2003).

    Article  CAS  Google Scholar 

  5. Zheng, M., Aslund, F. & Storz, G. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721 (1998).

    Article  CAS  Google Scholar 

  6. Choi, H. et al. Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113 (2001).

    Article  CAS  Google Scholar 

  7. Toledano, M.B. & D'Autréaux, B. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813–824 (2007).

    PubMed  Google Scholar 

  8. Lee, J.W., Soonsanga, S. & Helmann, J.D. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc. Natl. Acad. Sci. USA 104, 8743–8748 (2007).

    Article  CAS  Google Scholar 

  9. Lee, J.W. & Helmann, J.D. The PerR transcription factor senses H2O2 by metal-catalyzed histidine oxidation. Nature 440, 363–367 (2006).

    Article  CAS  Google Scholar 

  10. Herbig, A.F. & Helmann, J.D. Roles of metal ions and hydrogen peroxide in modulating the interaction of the Bacillus subtilis PerR peroxide regulon repressor with operator DNA. Mol. Microbiol. 41, 849–859 (2001).

    Article  CAS  Google Scholar 

  11. Traoré, D.A.K. et al. Crystal structure of the apo-PerR-Zn protein from Bacillus subtilis. Mol. Microbiol. 61, 1211–1219 (2006).

    Article  Google Scholar 

  12. Lee, J.W. & Helmann, J.D. Biochemical characterization of the structural Zn2+ site in the Bacillus subtilis peroxide sensor PerR. J. Biol. Chem. 281, 23567–23578 (2006).

    Article  CAS  Google Scholar 

  13. Fuangthong, M., Herbig, A.F., Bsat, N. & Helmann, J.D. Regulation of the Bacillus subtilis fur and perR genes by PerR: not all members of the PerR regulon are peroxide inducible. J. Bacteriol. 184, 3276–3286 (2002).

    Article  CAS  Google Scholar 

  14. Schoneich, C. Mechanisms of metal-catalyzed oxidation of histidine to 2-oxo-histidine in peptides and proteins. J. Pharm. Biomed. Anal. 21, 1093–1097 (2000).

    Article  CAS  Google Scholar 

  15. Uchida, K. & Kawakishi, S. Identification of oxidized histidine generated at the active site of Cu,Zn-superoxide dismutase exposed to H2O2. Selective generation of 2-oxo-histidine at the histidine 118. J. Biol. Chem. 269, 2405–2410 (1994).

    CAS  PubMed  Google Scholar 

  16. Uchida, K. & Kawakishi, S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett. 332, 208–210 (1993).

    Article  CAS  Google Scholar 

  17. Meister Winter, G.E. & Butler, A. Inactivation of vanadium bromoperoxidase: formation of 2-oxohistidine. Biochemistry 35, 11805–11811 (1996).

    Article  CAS  Google Scholar 

  18. Schoneich, C. & Williams, T.D. Cu(II)-catalyzed oxidation of beta-amyloid peptide targets His13 and His14 over His6: detection of 2-oxo-histidine by HPLC-MS/MS. Chem. Res. Toxicol. 15, 717–722 (2002).

    Article  Google Scholar 

  19. Hovorka, S.W., Biesiada, H., Williams, T.D., Hühmer, A. & Schoneich, C. High sensitivity of Zn2+ insulin to metal-catalyzed oxidation: detection of 2-oxo-histidine by tandem mass spectrometry. Pharm. Res. 19, 530–537 (2002).

    Article  CAS  Google Scholar 

  20. Lewisch, S.A. & Levine, R.L. Determination of 2-oxohistidine by amino acid analysis. Anal. Biochem. 231, 440–446 (1995).

    Article  CAS  Google Scholar 

  21. Piraud, M. et al. Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun. Mass Spectrom. 19, 1587–1602 (2005).

    Article  CAS  Google Scholar 

  22. Reed, G.H. & Cohn, M. Electron paramagnetic resonance spectra of manganese (II)-protein complexes. Manganese (II)-concanavalin A. J. Biol. Chem. 245, 662–664 (1970).

    CAS  PubMed  Google Scholar 

  23. Xu, G. & Chance, M.R. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem. Rev. 107, 3514–3543 (2007).

    Article  CAS  Google Scholar 

  24. Farquhar, E.R., Koehntop, K.D., Emerson, J.P. & Que, L.J. Post-translational self-hydroxylation: a probe for oxygen activation mechanisms in non-heme iron enzymes. Biochem. Biophys. Res. Commun. 338, 230–239 (2005).

    Article  CAS  Google Scholar 

  25. Schofield, C.J. & Ratcliffe, P.J. Oxygen sensing by HIF hydroxylases. Nat. Rev. Mol. Cell Biol. 5, 343–354 (2004).

    Article  CAS  Google Scholar 

  26. Hillmann, F., Fischer, R.J., Saint-Prix, F., Girbal, L. & Bahl, H. PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol. Microbiol. 68, 848–860 (2008).

    Article  CAS  Google Scholar 

  27. Ohana, J. et al. CATS: a cryogenic automated transfer system installed on the beamline FIP at ESRF. J. Appl. Crystallogr. 37, 72–77 (2004).

    Article  CAS  Google Scholar 

  28. Roth, M. et al. FIP: a highly automated beamline for multiwavelength anomalous diffraction experiments. Acta Crystallogr. D Biol. Crystallogr. 58, 805–814 (2002).

    Article  CAS  Google Scholar 

  29. Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Crystallogr. 26, 795–800 (1993).

    Article  CAS  Google Scholar 

  30. McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. Likelihood-enhanced fast translation functions. Acta Crystallogr. D Biol. Crystallogr. 61, 458–464 (2005).

    Article  Google Scholar 

  31. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  32. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We thank O. Sénèque for the calibration of the 2-oxo-histidine standard solution by NMR and C. Saint-Pierre for mass spectrometry measurements at the initial stage of this work. This work is dedicated to the memory of Lilian Jacquamet.

Author information

Authors and Affiliations

Authors

Contributions

V.D. and J.-M.L. analyzed the results and co-wrote the paper; C.C.-T. prepared the protein samples; A.E.G. prepared a calibrated solution of 2-oxo-histidine; G.B. performed the EPR experiments, analyzed the results and wrote the corresponding section; D.L., J.-L.R. and M.J. performed the mass spectrometry experiments and analyzed the corresponding results; L.J., D.A.K.T., F.B. and J.-L.F. solved the PerR-Zn-ox structure and wrote the corresponding section.

Corresponding authors

Correspondence to Victor Duarte or Jean-Marc Latour.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 686 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traoré, D., Ghazouani, A., Jacquamet, L. et al. Structural and functional characterization of 2-oxo-histidine in oxidized PerR protein. Nat Chem Biol 5, 53–59 (2009). https://doi.org/10.1038/nchembio.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing