A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo

Article metrics

  • A Corrigendum to this article was published on 17 January 2014

Abstract

Whole-cell catalysts for non-natural chemical reactions will open new routes to sustainable production of chemicals. We designed a cytochrome 'P411' with unique serine-heme ligation that catalyzes efficient and selective olefin cyclopropanation in intact Escherichia coli cells. The mutation C400S in cytochrome P450BM3 gives a signature ferrous CO Soret peak at 411 nm, abolishes monooxygenation activity, raises the resting-state FeIII-to-FeII reduction potential and substantially improves NAD(P)H-driven activity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Contrasting P450- and P411-mediated cyclopropanation.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 19 December 2013

    In the version of this article initially published, the Protein Data Bank codes for the P450 and P411 constructs were inadvertently switched. Accession code 4H23 actually corresponds to the P411 structure, and 4H24 corresponds to the P450 structure. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Ajikumar, P.K. et al. Science 330, 70–74 (2010).

  2. 2

    Westfall, P.J. et al. Proc. Natl. Acad. Sci. USA 109, E111–E118 (2012).

  3. 3

    Kataoka, M. et al. Appl. Microbiol. Biotechnol. 62, 437–445 (2003).

  4. 4

    Boyce, M. & Bertozzi, C.R. Nat. Methods 8, 638–642 (2011).

  5. 5

    Coelho, P.S., Brustad, E.M., Kannan, A. & Arnold, F.H. Science 339, 307–310 (2013).

  6. 6

    Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A.B. Chem. Rev. 103, 977–1050 (2003).

  7. 7

    Evans, D.A., Woerpel, K.A., Hinman, M.M. & Faul, M.M. J. Am. Chem. Soc. 113, 726–728 (1991).

  8. 8

    Davies, H.M.L. & Venkataramani, C. Org. Lett. 5, 1403–1406 (2003).

  9. 9

    Maas, G. Chem. Soc. Rev. 33, 183–190 (2004).

  10. 10

    Ost, T.W.B. et al. Biochemistry 40, 13421–13429 (2001).

  11. 11

    Wuttke, D.S. & Gray, H.B. Curr. Opin. Struct. Biol. 3, 555–563 (1993).

  12. 12

    Reedy, C.J., Elvekrog, M.M. & Gibney, B.R. Nucleic Acids Res. 36, D307–D313 (2008).

  13. 13

    Dawson, J.H. Science 240, 433–439 (1988).

  14. 14

    Vatsis, K.P., Peng, H.-M. & Coon, M.J. J. Inorg. Biochem. 91, 542–553 (2002).

  15. 15

    Wolf, J.R., Hamaker, C.G., Djukic, J.-P., Kodadek, T. & Woo, L.K. J. Am. Chem. Soc. 117, 9194–9199 (1995).

  16. 16

    Perera, R., Sono, M., Voegtle, H.L. & Dawson, J.H. Arch. Biochem. Biophys. 507, 119–125 (2011).

  17. 17

    Dunford, A.J., Girvan, H.M., Scrutton, N.S. & Munro, A.W. Biochim. Biophys. Acta 1794, 1181–1189 (2009).

  18. 18

    Wessjohann, L.A., Brandt, W. & Thiemann, T. Chem. Rev. 103, 1625–1648 (2003).

  19. 19

    Penoni, A. et al. Eur. J. Inorg. Chem. 1452–1460 (2003).

  20. 20

    Watanabe, N., Matsuda, H., Kuribayashi, H. & Hashimoto, S.-i. Heterocycles 42, 537–542 (1996).

  21. 21

    Sambrook, J., Frisch, E. & Maniatis, T. Molecular Cloning: a Laboratory Manual, Vol. 2 (Cold Spring Harbor Laboratory Press, New York, 1989).

  22. 22

    Omura, T. & Sato, R. J. Biol. Chem. 239, 2370–2378 (1964).

  23. 23

    Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

  24. 24

    Evans, P. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

  25. 25

    Haines, D.C., Tomchick, D.R., Machius, M. & Peterson, J.A. Biochemistry 40, 13456–13465 (2001).

  26. 26

    Vagin, A. & Teplyakov, A. Acta Crystallogr. D Biol Crystallogr. 30, 1022–1025 (1997).

  27. 27

    Bailey, S. Acta Crystallogr. D Biol Crystallogr. 50, 760–763 (1994).

  28. 28

    Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol Crystallogr. 60, 2126–2132 (2004).

  29. 29

    Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

  30. 30

    Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

Download references

Acknowledgements

This research is supported by the Gordon and Betty Moore Foundation through the Caltech Programmable Molecular Technology Initiative. E.M.B. was supported by US National Institutes of Health (NIH) postdoctoral award F32GM087102 and a generous startup fund from University of North Carolina–Chapel Hill (UNC). Z.J.W. was supported by NIH 1F32EB015846-01. M.E.E. was supported by NIH grant RO1-DK019038. We thank N. Peck for help with preparative-scale experiments. We thank the Redinbo laboratory at UNC for assistance with X-ray data collection. M.E.E. thanks J.D. Blakemore and J.R. Winkler for electrodes and helpful discussions.

Author information

P.S.C., F.H.A. and E.M.B. conceived the project and wrote the paper; P.S.C., E.M.B. and Z.J.W. designed the experiments; E.M.B. and S.A.B. performed the crystallography; M.E.E. performed the redox titrations; P.S.C., Z.J.W. and A.K. performed the catalysis experiments; all authors discussed the results.

Correspondence to Frances H Arnold or Eric M Brustad.

Ethics declarations

Competing interests

P.S.C., E.M.B., Z.J.W. and F.H.A. have filed through Caltech a provisional patent application that is based on results presented here.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Tables 1–12 (PDF 3560 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coelho, P., Wang, Z., Ener, M. et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat Chem Biol 9, 485–487 (2013) doi:10.1038/nchembio.1278

Download citation

Further reading