Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of a designed retro-aldolase leads to complete active site remodeling

Abstract

Evolutionary advances are often fueled by unanticipated innovation. Directed evolution of a computationally designed enzyme suggests that pronounced molecular changes can also drive the optimization of primitive protein active sites. The specific activity of an artificial retro-aldolase was boosted >4,400-fold by random mutagenesis and screening, affording catalytic efficiencies approaching those of natural enzymes. However, structural and mechanistic studies reveal that the engineered catalytic apparatus, consisting of a reactive lysine and an ordered water molecule, was unexpectedly abandoned in favor of a new lysine residue in a substrate-binding pocket created during the optimization process. Structures of the initial in silico design, a mechanistically promiscuous intermediate and one of the most evolved variants highlight the importance of loop mobility and supporting functional groups in the emergence of the new catalytic center. Such internal competition between alternative reactive sites may have characterized the early evolution of many natural enzymes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Amine catalysis of the retro-aldol reaction.
Figure 2: Computationally designed retro-aldolase RA95.0.
Figure 3: Structural optimization of the retro-aldolase.
Figure 4: Evolutionary transformation of the computationally designed retro-aldolase.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Bolon, D.N. & Mayo, S.L. Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. USA 98, 14274–14279 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang, L. et al. De novo computational design of retro-aldol enzymes. Science 319, 1387–1391 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Röthlisberger, D. et al. Kemp elimination catalysts by computational enzyme design. Nature 453, 190–195 (2008).

    Article  PubMed  Google Scholar 

  4. Privett, H.K. et al. Iterative approach to computational enzyme design. Proc. Natl. Acad. Sci. USA 109, 3790–3795 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siegel, J.B. et al. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329, 309–313 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kries, H., Blomberg, R. & Hilvert, D. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 17, 221–228 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Althoff, E.A. et al. Robust design and optimization of retroaldol enzymes. Protein Sci. 21, 717–726 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Khersonsky, O. et al. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl. Acad. Sci. USA 109, 10358–10363 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gefflaut, T., Blonski, C., Perie, J. & Willson, M.l. Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects. Prog. Biophys. Mol. Biol. 63, 301–340 (1995).

    Article  CAS  PubMed  Google Scholar 

  10. Lassila, J.K., Baker, D. & Herschlag, D. Origins of catalysis by computationally designed retroaldolase enzymes. Proc. Natl. Acad. Sci. USA 107, 4937–4942 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, L. et al. Structural analyses of covalent enzyme-substrate analog complexes reveal strengths and limitations of de novo enzyme design. J. Mol. Biol. 415, 615–625 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Richter, F., Leaver-Fay, A., Khare, S.D., Bjelic, S. & Baker, D. De novo enzyme design using Rosetta3. PLoS ONE 6, e19230 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tagaki, W. & Yamamoto, H. Polyamino-β-cyclodextrin as a model of aldolase. Tetrahedr. Lett. 32, 1207–1208 (1991).

    Article  CAS  Google Scholar 

  14. Tanaka, F., Fuller, R. & Barbas, C.F. III. Development of small designer aldolase enzymes: catalytic activity, folding, and substrate specificity. Biochemistry 44, 7583–7592 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Müller, M.M., Windsor, M.A., Pomerantz, W.C., Gellman, S.H. & Hilvert, D. A rationally designed aldolase foldamer. Angew. Chem. Int. Ed. Engl. 48, 922–925 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wörsdörfer, B., Henning, L., Obexer, R. & Hilvert, D. Harnessing protein symmetry for enzyme design. ACS Catal. 2, 982–985 (2012).

    Article  Google Scholar 

  17. Wymer, N. et al. Directed evolution of a new catalytic site in 2-keto-3-deoxy-6-phosphogluconate aldolase from Escherichia coli. Structure 9, 1–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Heine, A. et al. Observation of covalent intermediates in an enzyme mechanism at atomic resolution. Science 294, 369–374 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Leung, D.W., Chen, E. & Goeddel, D.V. A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1, 11–15 (1989).

    Google Scholar 

  20. Stemmer, W.P. DNA shuffling by random fragmentation and reassembly: in vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. USA 91, 10747–10751 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barbas, C.F. et al. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278, 2085–2092 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Esposito, G. et al. Structural and functional analysis of aldolase B mutants related to hereditary fructose intolerance. FEBS Lett. 531, 152–156 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Kipnis, Y. & Baker, D. Comparison of designed and randomly generated catalysts for simple chemical reactions. Protein Sci. 21, 1388–1395 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. St-Jean, M., Blonski, C. & Sygusch, J. Charge stabilization and entropy reduction of central lysine residues in fructose-bisphosphate aldolase. Biochemistry 48, 4528–4537 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Wilson, I.A. & Stanfield, R.L. Antibody-antigen interactions: new structures and new conformational changes. Curr. Opin. Struct. Biol. 4, 857–867 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Cauerhff, A., Goldbaum, F.A. & Braden, B.C. Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc. Natl. Acad. Sci. USA 101, 3539–3544 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ruscio, J.Z., Kohn, J.E., Ball, K.A. & Head-Gordon, T. The influence of protein dynamics on the success of computational enzyme design. J. Am. Chem. Soc. 131, 14111–14115 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tokuriki, N. & Tawfik, D.S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Babbitt, P.C. & Gerlt, J.A. Understanding enzyme superfamilies. Chemistry as the fundamental determinant in the evolution of new catalytic activities. J. Biol. Chem. 272, 30591–30594 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Zanghellini, A. et al. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 15, 2785–2794 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Neylon, C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res. 32, 1448–1459 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain-reaction. Gene 77, 51–59 (1989).

    Article  CAS  PubMed  Google Scholar 

  34. Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hennig, M., Darimont, B.D., Jansonius, J.N. & Kirschner, K. The catalytic mechanism of indole-3-glycerol phosphate synthase: crystal structures of complexes of the enzyme from Sulfolobus solfataricus with substrate analogue, substrate, and product. J. Mol. Biol. 319, 757–766 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Adams, P.D. et al. Recent developments in the PHENIX software for automated crystallographic structure determination. J. Synchotron Radiat. 11, 53–55 (2004).

    Article  CAS  Google Scholar 

  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  PubMed  Google Scholar 

  39. Karplus, P.A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. List, B., Barbas, C.F. III & Lerner, R.A. Aldol sensors for the rapid generation of tunable fluorescence by antibody catalysis. Proc. Natl. Acad. Sci. USA 95, 15351–15355 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Turner, J.M., Bui, T., Lerner, R.A., Barbas, C.F. III & List, B. An efficient benchtop system for multigram-scale kinetic resolutions using aldolase antibodies. Chemistry 6, 2772–2774 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Tomizaki, M. Müller, V. Olieric, G. Pompidor and A. Pauluhn at the Swiss Light Source for their outstanding support and all of the members of the Ban laboratory for suggestions and discussions. We are also grateful to E. Althoff (University of Washington) for providing the genes for RA95.0 and RA95.5 and sharing data before publication and to D. Gillingham and S. Tonazzi (ETH Zurich) for inhibitor synthesis and substrate resolution. The authors acknowledge support from the Swiss National Science Foundation (SNSF) (N.B. and D.H.), the National Center of Excellence in Research Structural Biology program of the SNSF (N.B.), the ETH Zurich (P.K., N.B. and D.H.), the Defense Advanced Research Projects Agency (D.B. and D.H.) and the Howard Hughes Medical Institute (D.B.). L.G. was funded by the Stipendienfonds der Schweizerischen Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Contributions

D.H., N.B., D.B., P.K., L.G. and S.C. designed the experiments. L.G. and R.O. evolved and biochemically characterized the variants; S.C. crystallized the proteins and solved their structures. The manuscript and figures were prepared by L.G., S.C., P.K., N.B. and D.H.

Corresponding authors

Correspondence to Nenad Ban or Donald Hilvert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 3491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giger, L., Caner, S., Obexer, R. et al. Evolution of a designed retro-aldolase leads to complete active site remodeling. Nat Chem Biol 9, 494–498 (2013). https://doi.org/10.1038/nchembio.1276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing