Unexpected non-Hoogsteen–based mutagenicity mechanism of FaPy-DNA lesions


8-Oxopurines (8-oxodG and 8-oxodA) and formamidopyrimidines (FaPydG and FaPydA) are major oxidative DNA lesions involved in cancer development and aging. Their mutagenicity is believed to result from a conformational shift of the N9-C1′ glycosidic bonds from anti to syn, which allows the lesions to form noncanonical Hoogsteen-type base pairs with incoming triphosphates during DNA replication. Here we present biochemical data and what are to our knowledge the first crystal structures of carbocyclic FaPydA and FaPydG containing DNA in complex with a high-fidelity polymerase. Crystallographic snapshots show that the cFaPy lesions keep the anti geometry of the glycosidic bond during error-free and error-prone replication. The observed dG·dC→dT·dA transversion mutations are the result of base shifting and tautomerization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Representation of the two main oxidation products of 2′-deoxyguanosine (8-oxodG, FaPydG) and FaPydA.
Figure 2: Nucleotide insertion and bypass of oxidative lesions.
Figure 3: Error-free reading of Bst Pol I through cFaPydA-containing template DNA.
Figure 4: Error-free reading of Bst Pol I through cFaPydG-containing template DNA.
Figure 5: Erroneous bypass and extension of cFaPydG.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank


  1. 1

    Finkel, T. & Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239–247 (2000).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Cadet, J., Douki, T. & Ravanat, J.L. Oxidatively generated base damage to cellular DNA. Free Radic. Biol. Med. 49, 9–21 (2010).

    CAS  Article  Google Scholar 

  3. 3

    Steenken, S. & Jovanovic, S.V. How easily oxidizible is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 119, 617–618 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Cadet, J., Douki, T. & Ravanat, J.L. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc. Chem. Res. 41, 1075–1083 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Jena, N.R. & Mishra, P.C. Formation of ring-opened and rearranged products of guanine: mechanisms and biological significance. Free Radic. Biol. Med. 53, 81–94 (2012).

    CAS  Article  Google Scholar 

  6. 6

    Hsu, G.W., Ober, M., Carell, T. & Beese, L.S. Error-prone replication of oxidatively damaged DNA by a high-fidelity DNA polymerase. Nature 431, 217–221 (2004).

    CAS  Article  Google Scholar 

  7. 7

    Duarte, V., Muller, J.G. & Burrows, C.J. Insertion of dGMP and dAMP during in vitro DNA synthesis opposite an oxidized form of 7,8-dihydro-8-oxoguanine. Nucleic Acids Res. 27, 496–502 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8

    Brieba, L.G. et al. Structural basis for the dual coding potential of 8-oxoguanosine by a high-fidelity DNA polymerase. EMBO J. 23, 3452–3461 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Greenberg, M.M. The formamidopyrimidines: purine lesions formed in competition with 8-oxopurines from oxidative stress. Acc. Chem. Res. 45, 588–597 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Brieba, L.G. & Ellenberger, T. Hold tight (but not too tight) to get it right: accurate bypass of an 8-oxoguanine lesion by DNA polymerase β. Structure 11, 1–2 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Krahn, J.M., Beard, W.A., Miller, H., Grollman, A.P. & Wilson, S.H. Structure of DNA polymerase β with the mutagenic DNA lesion 8-oxodeoxyguanine reveals structural insights into its coding potential. Structure 11, 121–127 (2003).

    CAS  Article  Google Scholar 

  12. 12

    Eoff, R.L., Irimia, A., Angel, K.C., Egli, M. & Guengerich, F.P. Hydrogen bonding of 7,8-dihydro-8-oxodeoxyguanosine with a charged residue in the little finger domain determines miscoding events in Sulfolobus solfataricus DNA polymerase Dpo4. J. Biol. Chem. 282, 19831–19843 (2007).

    CAS  Article  Google Scholar 

  13. 13

    Vasquez-Del Carpio, R. et al. Structure of human DNA polymerase κ inserting dATP opposite an 8-OxoG DNA lesion. PLoS ONE 4, e5766 (2009).

    Article  Google Scholar 

  14. 14

    Batra, V.K. et al. Mutagenic conformation of 8-oxo-7,8-dihydro-2′-dGTP in the confines of a DNA polymerase active site. Nat. Struct. Mol. Biol. 17, 889–890 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Dizdaroglu, M., Kirkali, G. & Jaruga, P. Formamidopyrimidines in DNA: mechanisms of formation, repair, and biological effects. Free Radic. Biol. Med. 45, 1610–1621 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Büsch, F. et al. Dissecting the differences between the α and β anomers of the oxidative DNA lesion FaPydG. Chemistry 14, 2125–2132 (2008).

    Article  Google Scholar 

  17. 17

    Graziewicz, M.A. et al. Fapyadenine is a moderately efficient chain terminator for prokaryotic DNA polymerases. Free Radic. Biol. Med. 28, 75–83 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Delaney, M.O., Wiederholt, C.J. & Greenberg, M.M. Fapy.dA induces nucleotide misincorporation translesionally by a DNA polymerase. Angew. Chem. Int. Ed. Engl. 41, 771–773 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Wiederholt, C.J. & Greenberg, M.M. Fapy.dG instructs Klenow exo to misincorporate deoxyadenosine. J. Am. Chem. Soc. 124, 7278–7279 (2002).

    CAS  Article  Google Scholar 

  20. 20

    Ober, M., Müller, H., Pieck, C., Gierlich, J. & Carell, T. Base pairing and replicative processing of the formamidopyrimidine-dG DNA lesion. J. Am. Chem. Soc. 127, 18143–18149 (2005).

    CAS  Article  Google Scholar 

  21. 21

    Tudek, B. et al. Mutagenic specificity of imidazole ring-opened 7-methylpurines in M13mp18 phage DNA. Acta Biochim. Pol. 46, 785–799 (1999).

    CAS  Google Scholar 

  22. 22

    Kalam, M.A. et al. Genetic effects of oxidative DNA damages: comparative mutagenesis of the imidazole ring-opened formamidopyrimidines (Fapy lesions) and 8-oxo-purines in simian kidney cells. Nucleic Acids Res. 34, 2305–2315 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Patro, J.N. et al. Studies on the replication of the ring opened formamidopyrimidine, Fapy.dG in Escherichia coli. Biochemistry 46, 10202–10212 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Asagoshi, K., Terato, H., Ohyama, Y. & Ide, H. Effects of a guanine-derived formamidopyrimidine lesion on DNA replication: translesion DNA synthesis, nucleotide insertion, and extension kinetics. J. Biol. Chem. 277, 14589–14597 (2002).

    CAS  Article  Google Scholar 

  25. 25

    Christov, P.P., Angel, K.C., Guengerich, F.P. & Rizzo, C.J. Replication past the N5-methyl-formamidopyrimidine lesion of deoxyguanosine by DNA polymerases and an improved procedure for sequence analysis of in vitro bypass products by mass spectrometry. Chem. Res. Toxicol. 22, 1086–1095 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26

    Ober, M., Linne, U., Gierlich, J. & Carell, T. The two main DNA lesions 8-oxo-7,8-dihydroguanine and 2,6-diamino-5-formamido-4-hydroxypyrimidine exhibit strongly different pairing properties. Angew. Chem. Int. Ed. Engl. 42, 4947–4951 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Ober, M., Marsch, M., Harms, K. & Carell, T. A carbocyclic analogue of a protected β-d-2-deoxyribosylamine. Acta Crystallogr. Sect. E Struct. Rep. Online 60, o1191–o1192 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Patro, J.N., Haraguchi, K., Delaney, M.O. & Greenberg, M.M. Probing the configurations of formamidopyrimidine lesions Fapy·dA and Fapy·dG in DNA using endonuclease IV. Biochemistry 43, 13397–13403 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Kiefer, J.R. et al. Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 Å resolution. Structure 5, 95–108 (1997).

    CAS  Article  Google Scholar 

  30. 30

    Raoul, S., Bardet, M. & Cadet, J. Gamma irradiation of 2′-deoxyadenosine in oxygen-free aqueous solutions: identification and conformational features of formamidopyrimidine nucleoside derivatives. Chem. Res. Toxicol. 8, 924–933 (1995).

    CAS  Article  Google Scholar 

  31. 31

    Lukin, M. et al. Novel post-synthetic generation, isomeric resolution, and characterization of Fapy-dG within oligodeoxynucleotides: differential anomeric impacts on DNA duplex properties. Nucleic Acids Res. 39, 5776–5789 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Münzel, M. et al. Improved synthesis and mutagenicity of oligonucleotides containing 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. Chemistry 17, 13782–13788 (2011).

    Article  Google Scholar 

  33. 33

    Stathis, D., Lischke, U., Koch, S.C., Deiml, C.A. & Carell, T. Discovery and mutagenicity of a guanidinoformimine lesion as a new intermediate of the oxidative deoxyguanosine degradation pathway. J. Am. Chem. Soc. 134, 4925–4930 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Johnson, S.J., Taylor, J.S. & Beese, L.S. Processive DNA synthesis observed in a polymerase crystal suggests a mechanism for the prevention of frameshift mutations. Proc. Natl. Acad. Sci. USA 100, 3895–3900 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Topal, M.D. & Fresco, J.R. Complementary base pairing and the origin of substitution mutations. Nature 263, 285–289 (1976).

    CAS  Article  Google Scholar 

  36. 36

    Wang, W., Hellinga, H.W. & Beese, L.S. Structural evidence for the rare tautomer hypothesis of spontaneous mutagenesis. Proc. Natl. Acad. Sci. USA 108, 17644–17648 (2011).

    CAS  Article  Google Scholar 

  37. 37

    Johnson, S.J. & Beese, L.S. Structures of mismatch replication errors observed in a DNA polymerase. Cell 116, 803–816 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Creighton, S., Bloom, L.B. & Goodman, M.F. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. 262, 232–256 (1995).

    CAS  Article  Google Scholar 

  39. 39

    Münzel, M., Lercher, L., Müller, M. & Carell, T. Chemical discrimination between dC and 5MedC via their hydroxylamine adducts. Nucleic Acids Res. 38, e192 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  42. 42

    Evans, P. Joint CCP4 and ESF-EACMB. Newsletter Prot. Crystallogr. 33, 22–24 (1997).

    Google Scholar 

  43. 43

    McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Emsley, P., Lohkamp, B., Scott, W.G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45

    Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  46. 46

    Winn, M.D., Murshudov, G.N. & Papiz, M.Z. Macromolecular TLS refinement in REFMAC at moderate resolutions. Methods Enzymol. 374, 300–321 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Murshudov, G.N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Olson, W.K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).

    CAS  Article  Google Scholar 

  49. 49

    Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D. & Zakrzewska, K. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37, 5917–5929 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We are grateful to the beamline scientists at the Swiss Light Source and European Synchrotron Radiation Facility for setting up the beamlines. This research project was supported by the Deutsche Forschungsgemeinschaft through SFB 646 and SFB 749. Further support was obtained by the Volkswagen Foundation and in particular by the Excellence Cluster CiPSM. We thank K. Karaghiosoff and K. Lux for solving the crystal structures of the small molecules. We thank M. Müller for critical reading of the manuscript and many helpful discussions.

Author information




T.C. conceived and directed the study. He wrote the manuscript and designed experiments. T.H.G. and U.L. designed experiments. T.H.G. performed the synthesis of the lesions and of the DNA strands. U.L. and T.H.G. performed the biochemical experiments. U.L. purified the protein. K.L.G. performed the synthesis of cdG. S.A. developed the synthesis of cFaPydA. H.C.M. developed the synthesis of cdG. S.S. conducted crystallographic data collection and solved the crystal structures. H.Z. performed the theoretical studies. D.S.S. performed the NMR studies.

Corresponding author

Correspondence to Thomas Carell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Notes 1 and 2 (PDF 2994 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gehrke, T., Lischke, U., Gasteiger, K. et al. Unexpected non-Hoogsteen–based mutagenicity mechanism of FaPy-DNA lesions. Nat Chem Biol 9, 455–461 (2013). https://doi.org/10.1038/nchembio.1254

Download citation

Further reading