Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial localization of bacteria controls coagulation of human blood by 'quorum acting'

Abstract

Blood coagulation often accompanies bacterial infections and sepsis and is generally accepted as a consequence of immune responses. Though many bacterial species can directly activate individual coagulation factors, they have not been shown to directly initiate the coagulation cascade that precedes clot formation. Here we demonstrated, using microfluidics and surface patterning, that the spatial localization of bacteria substantially affects coagulation of human and mouse blood and plasma. Bacillus cereus and Bacillus anthracis, the anthrax-causing pathogen, directly initiated coagulation of blood in minutes when bacterial cells were clustered. Coagulation of human blood by B. anthracis required secreted zinc metalloprotease InhA1, which activated prothrombin and factor X directly (not via factor XII or tissue factor pathways). We refer to this mechanism as 'quorum acting' to distinguish it from quorum sensing—it does not require a change in gene expression, it can be rapid and it can be independent of bacterium-to-bacterium communication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human blood plasma coagulates on spatially localized B. cereus in the absence of flow.
Figure 2: Human whole blood coagulated on spatially localized B. cereus in the presence of flow.
Figure 3: B. cereus initiated coagulation by a mechanism different from that of the reagents used in either the PT test or the APPT test, bypassing factor VII and factor XII in initiating the coagulation cascade.
Figure 4: Human blood plasma coagulates on surface clusters of many Bacillus species, including B. anthracis, but not on control species of E. coli and S. aureus.
Figure 5: Two-dimensional simulations of the human blood coagulation cascade comparing the generation of activated coagulation factors by bacteria dispersed in solution versus bacteria clustered in a surface patch.
Figure 6: Clusters of B. anthracis rapidly initiate coagulation in mice.
Figure 7: Even without quorum sensing, clustering of bacteria may elicit large-scale action.

Similar content being viewed by others

References

  1. Opal, S.M. & Esmon, C.T. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit. Care 7, 23–38 (2003).

    Article  Google Scholar 

  2. Niessen, F. et al. Dendritic cell PAR1–S1P3 signalling couples coagulation and inflammation. Nature 452, 654–658 (2008).

    Article  CAS  Google Scholar 

  3. Sun, H. The interaction between pathogens and the host coagulation system. Physiology (Bethesda) 21, 281–288 (2006).

    CAS  Google Scholar 

  4. Stearns-Kurosawa, D.J., Lupu, F., Taylor, F.B., Kinasewitz, G. & Kurosawa, S. Sepsis and pathophysiology of anthrax in a nonhuman primate model. Am. J. Pathol. 169, 433–444 (2006).

    Article  CAS  Google Scholar 

  5. Esmon, C.T. The interactions between inflammation and coagulation. Br. J. Haematol. 131, 417–430 (2005).

    Article  CAS  Google Scholar 

  6. Tang, H. et al. Sepsis-induced coagulation in the baboon lung is associated with decreased tissue factor pathway inhibitor. Am. J. Pathol. 171, 1066–1077 (2007).

    Article  CAS  Google Scholar 

  7. Pawlinski, R. et al. Regulation of tissue factor and inflammatory mediators by Egr-1 in a mouse endotoxemia model. Blood 101, 3940–3947 (2003).

    Article  CAS  Google Scholar 

  8. Levi, M., de Jonge, E. & van der Poll, T. New treatment strategies for disseminated intravascular coagulation based on current understanding of the pathophysiology. Ann. Med. 36, 41–49 (2004).

    Article  CAS  Google Scholar 

  9. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  10. Mullarky, I.K. et al. Infection-stimulated fibrin deposition controls hemorrhage and limits hepatic bacterial growth during listeriosis. Infect. Immun. 73, 3888–3895 (2005).

    Article  CAS  Google Scholar 

  11. Imamura, T., Potempa, J., Tanase, S. & Travis, J. Activation of blood coagulation factor X by arginine-specific cysteine proteinases (gingipain-Rs) from Porphyromonas gingivalis. J. Biol. Chem. 272, 16062–16067 (1997).

    Article  CAS  Google Scholar 

  12. Narasaki, R. et al. Bacillolysin MA, a novel bacterial metalloproteinase that produces angiostatin-like fragments from plasminogen and activates protease zymogens in the coagulation and fibrinolysis systems. J. Biol. Chem. 280, 14278–14287 (2005).

    Article  CAS  Google Scholar 

  13. Smith, S.A. et al. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl. Acad. Sci. USA 103, 903–908 (2006).

    Article  CAS  Google Scholar 

  14. Friedrich, R. et al. Structural basis for reduced staphylocoagulase-mediated bovine prothrombin activation. J. Biol. Chem. 281, 1188–1195 (2006).

    Article  CAS  Google Scholar 

  15. Chung, M.C. et al. Degradation of circulating von Willebrand factor and its regulator ADAMTS13 implicates secreted Bacillus anthracis metalloproteases in anthrax consumptive coagulopathy. J. Biol. Chem. 283, 9531–9542 (2008).

    Article  CAS  Google Scholar 

  16. Chung, M.C. et al. Secreted neutral metalloproteases of Bacillus anthracis as candidate pathogenic factors. J. Biol. Chem. 281, 31408–31418 (2006).

    Article  CAS  Google Scholar 

  17. Herwald, H. et al. Activation of the contact-phase system on bacterial surfaces - a clue to serious complications in infectious diseases. Nat. Med. 4, 298–302 (1998).

    Article  CAS  Google Scholar 

  18. Muta, T. & Iwanaga, S. The role of hemolymph coagulation in innate immunity. Curr. Opin. Immunol. 8, 41–47 (1996).

    Article  CAS  Google Scholar 

  19. Jesty, J., Rodriguez, J. & Beltrami, E. Demonstration of a threshold response in a proteolytic feedback system: control of the autoactivation of factor XII. Pathophysiol. Haemost. Thromb. 34, 71–79 (2005).

    Article  CAS  Google Scholar 

  20. van't Veer, C. & Mann, K.G. Regulation of tissue factor initiated thrombin generation by the stoichiometric inhibitors tissue factor pathway inhibitor, antithrombin-III, and heparin cofactor-II. J. Biol. Chem. 272, 4367–4377 (1997).

    Article  CAS  Google Scholar 

  21. Kastrup, C.J., Runyon, M.K., Shen, F. & Ismagilov, R.F. Modular chemical mechanism predicts spatiotemporal dynamics of initiation in the complex network of hemostasis. Proc. Natl. Acad. Sci. USA 103, 15747–15752 (2006).

    Article  CAS  Google Scholar 

  22. Kastrup, C.J., Shen, F., Runyon, M.K. & Ismagilov, R.F. Characterization of the threshold response of initiation of blood clotting to stimulus patch size. Biophys. J. 93, 2969–2977 (2007).

    Article  CAS  Google Scholar 

  23. Weibel, D.B., DiLuzio, W.R. & Whitesides, G.M. Microfabrication meets microbiology. Nat. Rev. Microbiol. 5, 209–218 (2007).

    Article  CAS  Google Scholar 

  24. Whitesides, G.M., Ostuni, E., Takayama, S., Jiang, X.Y. & Ingber, D.E. Soft lithography in biology and biochemistry. Annu. Rev. Biomed. Eng. 3, 335–373 (2001).

    Article  CAS  Google Scholar 

  25. Pompano, R.R., Li, H.W. & Ismagilov, R.F. Rate of mixing controls rate and outcome of autocatalytic processes—theory and microfluidic experiments with chemical reactions and blood coagulation. Biophys. J. 95, 1531–1543 (2008).

    Article  CAS  Google Scholar 

  26. Runyon, M.K., Kastrup, C.J., Johnson-Kerner, B.L., Ha, T.G. & Ismagilov, R.F. The effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations. J. Am. Chem. Soc. 130, 3458–3464 (2008).

    Article  CAS  Google Scholar 

  27. Weaver, J.C., Williams, G.B., Klibanov, A. & Demain, A.L. Gel microdroplets - rapid detection and enumeration of individual microorganisms by their metabolic-activity. Bio/Technology 6, 1084–1089 (1988).

    CAS  Google Scholar 

  28. Siegel, A.C. et al. Cofabrication of electromagnets and microfluldic systems in poly(dimethylsiloxane). Angew. Chem. Int. Ed. 45, 6877–6882 (2006).

    Article  CAS  Google Scholar 

  29. Jiang, Y. & Doolittle, R.F. The evolution of vertebrate blood coagulation as viewed from a comparison of puffer fish and sea squirt genomes. Proc. Natl. Acad. Sci. USA 100, 7527–7532 (2003).

    Article  CAS  Google Scholar 

  30. Krem, M.M. & Di Cera, E. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem. Sci. 27, 67–74 (2002).

    Article  CAS  Google Scholar 

  31. Min, D.H., Tang, W.J. & Mrksich, M. Chemical screening by mass spectrometry to identify inhibitors of anthrax lethal factor. Nat. Biotechnol. 22, 717–723 (2004).

    Article  CAS  Google Scholar 

  32. Bugge, T.H. & Leppla, S.H. Anthrax target in macrophages unveiled. Nat. Genet. 38, 137–138 (2006).

    Article  CAS  Google Scholar 

  33. Moayeri, M., Haines, D., Young, H.A. & Leppla, S.H. Bacillus anthracis lethal toxin induces TNF-alpha-independent hypoxia-mediated toxicity in mice. J. Clin. Invest. 112, 670–682 (2003).

    Article  CAS  Google Scholar 

  34. Pomerantsev, A.P., Sitaraman, R., Galloway, C.R., Kivovich, V. & Leppla, S.H. Genome engineering in Bacillus anthracis using Cre recombinase. Infect. Immun. 74, 682–693 (2006).

    Article  CAS  Google Scholar 

  35. Gat, O. et al. Search for Bacillus anthracis potential vaccine candidates by a functional genomic-serologic screen. Infect. Immun. 74, 3987–4001 (2006).

    Article  CAS  Google Scholar 

  36. Jones, M.B. & Blaser, M.J. Detection of a luxS-signaling molecule in Bacillus anthracis. Infect. Immun. 71, 3914–3919 (2003).

    Article  CAS  Google Scholar 

  37. Beltrami, E. & Jesty, J. The role of membrane patch size and flow in regulating a proteolytic feedback threshold on a membrane: possible application in blood coagulation. Math. Biosci. 172, 1–13 (2001).

    Article  CAS  Google Scholar 

  38. Kawabata, S.I. et al. Highly sensitive peptide-4-methylcoumaryl-7-amide substrates for blood-clotting proteases and trypsin. Eur. J. Biochem. 172, 17–25 (1988).

    Article  CAS  Google Scholar 

  39. Loving, C.L., Kennett, M., Lee, G.M., Grippe, V.K. & Merkel, T.J. Murine aerosol challenge model of anthrax. Infect. Immun. 75, 2689–2698 (2007).

    Article  CAS  Google Scholar 

  40. Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature 407, 258–264 (2000).

    Article  CAS  Google Scholar 

  41. Sun, H.M. et al. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305, 1283–1286 (2004).

    Article  CAS  Google Scholar 

  42. Heidtmann, H.H. & Kontermann, R.E. Cloning and recombinant expression of mouse coagulation factor X. Thromb. Res. 92, 33–41 (1998).

    Article  CAS  Google Scholar 

  43. Degen, J.L., Bugge, T.H. & Goguen, J.D. Fibrin and fibrinolysis in infection and host defense. J. Thromb. Haemost. 5, 24–31 (2007).

    Article  CAS  Google Scholar 

  44. Akiyama, N. et al. Fulminant septicemic syndrome of Bacillus cereus in a leukemic patient. Intern. Med. 36, 221–226 (1997).

    Article  CAS  Google Scholar 

  45. Glomski, I.J., Piris-Gimenez, A., Huerre, M., Mock, M. & Goossens, P.L. Primary involvement of pharynx and Peyer's patch in inhalational and intestinal anthrax. PLoS Pathog. 3, e76 (2007).

    Article  Google Scholar 

  46. Bassler, B.L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Article  CAS  Google Scholar 

  47. Redfield, R.J. Is quorum sensing a side effect of diffusion sensing? Trends Microbiol. 10, 365–370 (2002).

    Article  CAS  Google Scholar 

  48. Coburn, P.S., Pillar, C.M., Jett, B.D., Haas, W. & Gilmore, M.S. Enterococcus faecalis senses target cells and in response expresses cytolysin. Science 306, 2270–2272 (2004).

    Article  CAS  Google Scholar 

  49. Demmer, R.T. & Desvarieux, M. Periodontal infections and cardiovascular disease - the heart of the matter. J. Am. Dent. Assoc. 137, 14S–20S (2006).

    Article  Google Scholar 

  50. Nowak, M.A. Five rules for the evolution of cooperation. Science 314, 1560–1563 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the US National Institutes of Health (NIH) Director's Pioneer Award (grant number DP1OD003584), the US National Science Foundation CAREER Award (grant number CHE-0349034), the US Office of Naval Research (grant number N000140610630), the Camille Dreyfus Teacher-Scholar Awards Program and the Cottrell Scholar of Research Corporation Awards Program to R.F.I., by NIH grants (GM 62548 and GM 81539) to W.-J.T., and by the Intramural Research Program of the NIAID. We thank J. Alverdy, B. Bishop, S. Crosson, C. Esmon, M. Mock, M. Runyon, J. Shapiro, U. Spitz, T. Van Ha, D. Wiebel and O. Zaborina for helpful discussions; O. Zaborina (The University of Chicago) for the gift of the EGPF plasmid for E. coli and for assisting in the transformation procedure; M. Mock (Institut Pasteur) for the gift of the mouse anti-InhA1 serum; L. Cheng and D. Crown for assisting in the animal studies; H. Herwald (Lund University) for the gift of the E. coli Ymel-1 strain; J. Handelsman (University of Wisconsin) for the gift of the B. cereus GFP strain; M. Blaser (New York University) for the gift of the B. anthracis ΔluxS strain; and J. Price for contributions in writing and editing this manuscript. We thank C. Tallant (Institut de Biologia Molecular de Barcelona) for assistance in construction of the protease gene knockout strains.

Author information

Authors and Affiliations

Authors

Contributions

C.J.K., J.Q.B., M.M., Y.B., R.R.P., T.R.K. and F.S. performed experiments; C.J.K., J.Q.B., M.M., Y.B., R.R.P., T.R.K., F.S., S.H.L., W.-J.T. and R.F.I. designed experiments and analyzed data; C.J.K., W.-J.T. and R.F.I. wrote the paper; A.P.P. and P.S. provided reagents.

Corresponding author

Correspondence to Rustem F Ismagilov.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Methods (PDF 2048 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastrup, C., Boedicker, J., Pomerantsev, A. et al. Spatial localization of bacteria controls coagulation of human blood by 'quorum acting'. Nat Chem Biol 4, 742–750 (2008). https://doi.org/10.1038/nchembio.124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing